Anatomy and Neuroscience - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 21
  • Item
    Thumbnail Image
    Developing a spinal cord injury research strategy using a structured process of evidence review and stakeholder dialogue. Part III: outcomes
    Middleton, JW ; Piccenna, L ; Gruen, RL ; Williams, S ; Creasey, G ; Dunlop, S ; Brown, D ; Batchelor, PE ; Berlowitz, DJ ; Coates, S ; Dunn, JA ; Furness, JB ; Galea, MP ; Geraghty, T ; Kwon, BK ; Urquhart, S ; Yates, D ; Bragge, P (NATURE PUBLISHING GROUP, 2015-10)
    STUDY DESIGN: Focus Group. OBJECTIVES: To develop a unified, regional spinal cord injury (SCI) research strategy for Australia and New Zealand. SETTING: Australia. METHODS: A 1-day structured stakeholder dialogue was convened in 2013 in Melbourne, Australia, by the National Trauma Research Institute in collaboration with the SCI Network of Australia and New Zealand. Twenty-three experts participated, representing local and international research, clinical, consumer, advocacy, government policy and funding perspectives. Preparatory work synthesised evidence and articulated draft principles and options as a starting point for discussion. RESULTS: A regional SCI research strategy was proposed, whose objectives can be summarised under four themes. (1) Collaborative networks and strategic partnerships to increase efficiency, reduce duplication, build capacity and optimise research funding. (2) Research priority setting and coordination to manage competing studies. (3) Mechanisms for greater consumer engagement in research. (4) Resources and infrastructure to further develop SCI data registries, evaluate research translation and assess alignment of research strategy with stakeholder interests. These are consistent with contemporary international SCI research strategy development activities. CONCLUSION: This first step in a regional SCI research strategy has articulated objectives for further development by the wider SCI research community. The initiative has also reinforced the importance of coordinated, collective action in optimising outcomes following SCI.
  • Item
    Thumbnail Image
    Selenium and vitamin E together improve intestinal epithelial barrier function and alleviate oxidative stress in heat-stressed pigs
    Liu, F ; Cottrell, JJ ; Furness, JB ; Rivera, LR ; Kelly, FW ; Wijesiriwardana, U ; Pustovit, RV ; Fothergill, LJ ; Bravo, DM ; Celi, P ; Leury, BJ ; Gabler, NK ; Dunshea, FR (WILEY, 2016-07-01)
    What is the central question of this study? Oxidative stress may play a role in compromising intestinal epithelial barrier integrity in pigs subjected to heat stress, but it is unknown whether an increase of dietary antioxidants (selenium and vitamin E) could alleviate gut leakiness in heat-stressed pigs. What is the main finding and its importance? Levels of dietary selenium (1.0 p.p.m.) and vitamin E (200 IU kg(-1) ) greater than those usually recommended for pigs reduced intestinal leakiness caused by heat stress. This finding suggests that oxidative stress plays a role in compromising intestinal epithelial barrier integrity in heat-stressed pigs and also provides a nutritional strategy for mitigating these effects. Heat stress compromises the intestinal epithelial barrier integrity of mammals through mechanisms that may include oxidative stress. Our objective was to test whether dietary supplementation with antioxidants, selenium (Se) and vitamin E (VE), protects intestinal epithelial barrier integrity in heat-stressed pigs. Female growing pigs (n = 48) were randomly assigned to four diets containing from 0.2 p.p.m. Se and 17 IU kg(-1) VE (control, National Research Council recommended) to 1.0 p.p.m. Se and 200 IU kg(-1) VE for 14 days. Six pigs from each dietary treatment were then exposed to either thermoneutral (20°C) or heat-stress conditions (35°C 09.00-17.00 h and 28°C overnight) for 2 days. Transepithelial electrical resistance and fluorescein isothiocyanate-dextran (4 kDa; FD4) permeability were measured in isolated jejunum and ileum using Ussing chambers. Rectal temperature, respiratory rate and intestinal HSP70 mRNA abundance increased (all P < 0.001), and respiratory alkalosis occurred, suggesting that pigs were heat stressed. Heat stress also increased FD4 permeability and decreased transepithelial electrical resistance (both P < 0.01). These changes were associated with changes indicative of oxidative stress, a decreased glutathione peroxidase (GPX) activity and an increased glutathione disulfide (GSSG)-to-glutathione (GSH) ratio (both P < 0.05). With increasing dosage of Se and VE, GPX-2 mRNA (P = 0.003) and GPX activity (P = 0.049) increased linearly, the GSSG:GSH ratio decreased linearly (P = 0.037), and the impacts of heat stress on intestinal barrier function were reduced (P < 0.05 for both transepithelial electrical resistance and FD4 permeability). In conclusion, in pigs an increase of dietary Se and VE mitigated the impacts of heat stress on intestinal barrier integrity, associated with a reduction in oxidative stress.
  • Item
    Thumbnail Image
    Identification of enteroendocrine cells that express TRPA1 channels in the mouse intestine
    Cho, H-J ; Callaghan, B ; Bron, R ; Bravo, DM ; Furness, JB (SPRINGER, 2014-04)
    TRPA1 is an ion channel that detects specific chemicals in food and also transduces mechanical, cold and chemical stimulation. Its presence in sensory nerve endings is well known and recent evidence indicates that it is expressed by some gastrointestinal enteroendocrine cells (EEC). The purpose of the present work is to identify and quantify EEC that express TRPA1 in the mouse gastrointestinal tract. Combined in situ hybridisation histochemistry for TRPA1 and immunofluorescence for EEC hormones was used. TRPA1 expressing EEC were common in the duodenum and jejunum, were rare in the distal small intestine and were absent from the stomach and large intestine. In the duodenum and jejunum, TRPA1 occurred in EEC that contained both cholecystokinin (CCK) and 5-hydroxytryptamine (5HT) and in a small number of cells expressing 5HT but not CCK. TRPA1 was absent from CCK cells that did not express 5HT and from EEC containing glucagon-like insulinotropic peptide. Thus TRPA1 is contained in very specific EEC populations. It is suggested that foods such as garlic and cinnamon that contain TRPA1 stimulants may aid digestion by facilitating the release of CCK.
  • Item
    Thumbnail Image
    Antigen-loaded MR1 tetramers define T cell receptor heterogeneity in mucosal-associated invariant T cells
    Reantragoon, R ; Corbett, AJ ; Sakala, IG ; Gherardin, NA ; Furness, JB ; Chen, Z ; Eckle, SBG ; Uldrich, AP ; Birkinshaw, RW ; Patel, O ; Kostenko, L ; Meehan, B ; Kedzierska, K ; Liu, L ; Fairlie, DP ; Hansen, TH ; Godfrey, DI ; Rossjohn, J ; McCluskey, J ; Kjer-Nielsen, L (ROCKEFELLER UNIV PRESS, 2013-10-21)
    Mucosal-associated invariant T cells (MAIT cells) express a semi-invariant T cell receptor (TCR) α-chain, TRAV1-2-TRAJ33, and are activated by vitamin B metabolites bound by the major histocompatibility complex (MHC)-related class I-like molecule, MR1. Understanding MAIT cell biology has been restrained by the lack of reagents to specifically identify and characterize these cells. Furthermore, the use of surrogate markers may misrepresent the MAIT cell population. We show that modified human MR1 tetramers loaded with the potent MAIT cell ligand, reduced 6-hydroxymethyl-8-D-ribityllumazine (rRL-6-CH₂OH), specifically detect all human MAIT cells. Tetramer(+) MAIT subsets were predominantly CD8(+) or CD4(-)CD8(-), although a small subset of CD4(+) MAIT cells was also detected. Notably, most human CD8(+) MAIT cells were CD8α(+)CD8β(-/lo), implying predominant expression of CD8αα homodimers. Tetramer-sorted MAIT cells displayed a T(H)1 cytokine phenotype upon antigen-specific activation. Similarly, mouse MR1-rRL-6-CH₂OH tetramers detected CD4(+), CD4(-)CD8(-) and CD8(+) MAIT cells in Vα19 transgenic mice. Both human and mouse MAIT cells expressed a broad TCR-β repertoire, and although the majority of human MAIT cells expressed TRAV1-2-TRAJ33, some expressed TRAJ12 or TRAJ20 genes in conjunction with TRAV1-2. Accordingly, MR1 tetramers allow precise phenotypic characterization of human and mouse MAIT cells and revealed unanticipated TCR heterogeneity in this population.
  • Item
    Thumbnail Image
    New Roles of Serotonin and Tachykinins in Intestinal Mucositis?
    Callaghan, B ; Furness, JB (SPRINGER, 2013-12)
  • Item
    Thumbnail Image
    Glucagon-like peptide 1 and peptide YY are in separate storage organelles in enteroendocrine cells
    Cho, H-J ; Robinson, ES ; Rivera, LR ; McMillan, PJ ; Testro, A ; Nikfarjam, M ; Bravo, DM ; Furness, JB (SPRINGER, 2014-07)
    A sub-group of enteroendocrine cells (L cells) release gastrointestinal hormones, GLP-1 and PYY, which have different but overlapping physiological effects, in response to intraluminal nutrients. Whilst their release profiles are not identical, how the plasma levels of these two hormones are differentially regulated is not well understood. We investigate the possibility that GLP-1 and PYY are in separate storage vesicles. In this study, the subcellular location of GLP-1 and PYY storage organelles is investigated using double-labelling immunohistochemistry, super resolution microscopy and high-resolution confocal microscopy. In all species tested, human, pig, rat and mouse, most cytoplasmic stores that exhibited GLP-1 or PYY immunofluorescence were distinct from each other. The volume occupancy, determined by 3D analysis, overlapped by only about 10∼20 %. At the lower resolution achieved by conventional confocal microscopy, there was also evidence of GLP-1 and PYY being in separate storage compartments but, in subcellular regions where there were many storage vesicles, separate storage could not be resolved. The results indicate that different storage vesicles in L cells contain predominantly GLP-1 or predominantly PYY. Whether GLP-1 and PYY storage vesicles are selectively mobilised and their products are selectively released needs to be determined.
  • Item
    Thumbnail Image
    Humans as cucinivores: comparisons with other species
    Furness, JB ; Bravo, DM (SPRINGER HEIDELBERG, 2015-12)
    We discuss the relations of processed foods, especially cooked foods, in the human diet to digestive tract form and function. The modern consumption of over 70% of foods and beverages in highly refined form favours the diet-related classification of humans as cucinivores, rather than omnivores. Archaeological evidence indicates that humans have consumed cooked food for at least 300-400,000 years, and divergence in genes associated with human subpopulations that utilise different foods has been shown to occur over periods of 10-30,000 years. One such divergence is the greater presence of adult lactase persistence in communities that have consumed dairy products, over periods of about 8,000 years, compared to communities not consuming dairy products. We postulate that 300-400,000 years, or 10,000-14,000 generations, is sufficient time for food processing to have influenced the form and function of the human digestive tract. It is difficult to determine how long humans have prepared foods in other ways, such as pounding, grinding, drying or fermenting, but this appears to be for at least 20,000 years, which has been sufficient time to influence gene expression for digestive enzymes. Cooking and food processing expands the range of food that can be eaten, extends food availability into lean times and enhances digestibility. Cooking also detoxifies food to some extent, destroys infective agents, decreases eating time and slightly increases the efficiency of assimilation of energy substrates. On the other hand, cooking can destroy some nutrients and produce toxic products. The human digestive system is suited to a processed food diet because of its smaller volume, notably smaller colonic volume, relative to the intestines of other species, and because of differences from other primates in dentition and facial muscles that result in lower bite strength. There is no known group of humans which does not consume cooked foods, and the modern diet is dominated by processed foods. We conclude that humans are well adapted as consumers of processed, including cooked, foods.
  • Item
    Thumbnail Image
    Effects of Food Components That Activate TRPA1 Receptors on Mucosal Ion Transport in the Mouse Intestine
    Fothergill, LJ ; Callaghan, B ; Rivera, LR ; Lieu, T ; Poole, DP ; Cho, H-J ; Bravo, DM ; Furness, JB (MDPI AG, 2016-10)
    TRPA1 is a ligand-activated cation channel found in the intestine and other tissues. Components of food that stimulate TRPA1 receptors (phytonutrients) include allyl isothiocyanate, cinnamaldehyde and linalool, but these may also act at other receptors. Cells lining the intestinal mucosa are immunoreactive for TRPA1 and Trpa1 mRNA occurs in mucosal extracts, suggesting that the TRPA1 receptor is the target for these agonists. However, in situ hybridisation reveals Trpa1 expression in 5-HT containing enteroendocrine cells, not enterocytes. TRPA1 agonists evoke mucosal secretion, which may be indirect (through release of 5-HT) or direct by activation of enterocytes. We investigated effects of the phytonutrients on transmucosal ion currents in mouse duodenum and colon, and the specificity of the phytonutrients in cells transfected with Trpa1, and in Trpa1-deficient mice. The phytonutrients increased currents in the duodenum with the relative potencies: allyl isothiocyanate (AITC) > cinnamaldehyde > linalool (0.1 to 300 μM). The rank order was similar in the colon, but linalool was ineffective. Responses to AITC were reduced by the TRPA1 antagonist HC-030031 (100 μM), and were greatly diminished in Trpa1-/- duodenum and colon. Responses were not reduced by tetrodotoxin, 5-HT receptor antagonists, or atropine, but inhibition of prostaglandin synthesis reduced responses. Thus, functional TRPA1 channels are expressed by enterocytes of the duodenum and colon. Activation of enterocyte TRPA1 by food components has the potential to facilitate nutrient absorption.
  • Item
    Thumbnail Image
    Dietary advanced glycation end-products aggravate non-alcoholic fatty liver disease
    Leung, C ; Herath, CB ; Jia, Z ; Andrikopoulos, S ; Brown, BE ; Davies, MJ ; Rivera, LR ; Furness, JB ; Forbes, JM ; Angus, PW (BAISHIDENG PUBLISHING GROUP INC, 2016-09-21)
    AIM: To determine if manipulation of dietary advanced glycation end product (AGE), intake affects non-alcoholic fatty liver disease (NAFLD) progression and whether these effects are mediated via RAGE. METHODS: Male C57Bl6 mice were fed a high fat, high fructose, high cholesterol (HFHC) diet for 33 wk and compared with animals on normal chow. A third group were given a HFHC diet that was high in AGEs. Another group was given a HFHC diet that was marinated in vinegar to prevent the formation of AGEs. In a second experiment, RAGE KO animals were fed a HFHC diet or a high AGE HFHC diet and compared with wildtype controls. Hepatic biochemistry, histology, picrosirius red morphometry and hepatic mRNA were determined. RESULTS: Long-term consumption of the HFHC diet generated significant steatohepatitis and fibrosis after 33 wk. In this model, hepatic 4-hydroxynonenal content (a marker of chronic oxidative stress), hepatocyte ballooning, picrosirius red staining, α-smooth muscle actin and collagen type 1A gene expression were all significantly increased. Increasing the AGE content of the HFHC diet by baking further increased these markers of liver damage, but this was abrogated by pre-marination in acetic acid. In response to the HFHC diet, RAGE(-/-) animals developed NASH of similar severity to RAGE(+/+) animals but were protected from the additional harmful effects of the high AGE containing diet. Studies in isolated Kupffer cells showed that AGEs increase cell proliferation and oxidative stress, providing a likely mechanism through which these compounds contribute to liver injury. CONCLUSION: In the HFHC model of NAFLD, manipulation of dietary AGEs modulates liver injury, inflammation, and liver fibrosis via a RAGE dependent pathway. This suggests that pharmacological and dietary strategies targeting the AGE/RAGE pathway could slow the progression of NAFLD.
  • Item
    Thumbnail Image
    Both exogenous 5-HT and endogenous 5-HT, released by flu oxetine, enhance distension evoked propulsion in guinea-pig ileum in vitro
    Gwynne, RM ; Clarke, AJ ; Furness, JB ; Bornstein, JC (FRONTIERS MEDIA SA, 2014-09-19)
    The roles of 5-HT3 and 5-HT4 receptors in the modulation of intestinal propulsion by luminal application of 5-HT and augmentation of endogenous 5-HT effects were studied in segments of guinea-pig ileum in vitro. Persistent propulsive contractions evoked by saline distension were examined using a modified Trendelenburg method. When 5-HT (30 nM), fluoxetine (selective serotonin reuptake inhibitor; 1 nM), 2-methyl-5-HT (5-HT3 receptor agonist; 1 mM), or RS 67506 (5-HT4 receptor agonist, 1 μM) was infused into the lumen, the pressure needed to initiate persistent propulsive activity fell significantly. A specific 5-HT4 receptor antagonist, SB 207266 (10 nM in lumen), abolished the effects of 5-HT, fluoxetine, and RS 67506, but not those of 2-methyl-5-HT. Granisetron (5-HT3 receptor antagonist; 1 μM in lumen) abolished the effect of 5-HT, fluoxetine, RS 67506, and 2-methyl-5-HT. The NK3 receptor antagonist SR 142801 (100 nM in lumen) blocked the effects of 5-HT, fluoxetine, and 2-methyl-5-HT. SB 207266, granisetron, and SR 142801 had no effect by themselves. Higher concentrations of fluoxetine (100 and 300 nM) and RS 67506 (3 and 10 μM) had no effect on the distension threshold for propulsive contractions. These results indicate that luminal application of exogenous 5-HT, or increased release of endogenous mucosal 5-HT above basal levels, acts to lower the threshold for propulsive contractions in the guinea-pig ileum via activation of 5-HT3 and 5-HT4 receptors and the release of tachykinins. The results further indicate that basal release of 5-HT is insufficient to alter the threshold for propulsive motor activity.