Anatomy and Neuroscience - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 6 of 6
  • Item
    No Preview Available
    Reversibility of retinal ganglion cell dysfunction due to chronic IOP elevation.
    Zhao, D ; Wong, VHY ; He, Z ; Nguyen, CTO ; Jobling, AI ; Fletcher, E ; Chinnery, H ; Jusuf, P ; Lim, JKH ; Vingrys, AJ ; Bui, BV (Association for Research in Vision and Ophthalmology, 2018-07-01)
    Purpose : To determine the duration of chronic IOP elevation beyond which ganglion cell function can no longer recover using the mouse circumlimbal suture model. Methods : IOP elevation was induced in anaesthetized (isoflurane) adult male C57BL6/J mice by attaching a circumlimbal suture (nylon, 10/0) around the equator of one eye, with the contralateral eye serving as a control. The suture was left in place for 8, 12 and 16 weeks (n=27, 23 and 27), respectively, and animals underwent electroretinography and optical coherence tomography at these time points. In two other groups, the suture was removed after 8 and 12 weeks (n=26 and 28), and the capacity for recovery assessed 4 weeks later. IOP was measured weekly (Tonolab). Retinal ganglion cell (RGC) function (or integrity) was assessed with the positive scotopic threshold response (pSTR) and retinal nerve fibre layer (RNFL) thickness. Data (mean ± SEM) were compared using t-test (control vs. treatment) and one-way ANOVA (within groups). Results : IOP in sutured eyes was higher than control eyes (8wk: 17.1 ± 0.3 vs. 26.8 ± 0.6 mmHg, 12wk: 13.8 ± 0.3 vs. 19.5 ± 0.5 mmHg, 16wk: 17.1 ± 0.2 vs. 27.4 ± 0.6 mmHg; all P<0.001). After suture removal, IOP returned to levels comparable to control eyes (8+4wk: 16.9 ± 0.3 vs. 16.1 ± 0.3 mmHg; P=0.08, 12+4wk: 17.3 ± 0.2 vs. 17.1 ± 0.3 mmHg; P=0.5). With IOP elevation, RGC function declined to 75% ± 8% (8wk), 78% ± 7% (12wk) and 59% ± 4% (16wk, all P<0.001) of control eyes. RNFL thinning was also evident (8wk: 84% ± 4%, 12wk: 83% ± 5%; 16wk: 83% ± 3%; P<0.001) but no change in total retinal thickness was noted (P=0.33). Suture removal at week 8 facilitated full recovery of RGC function (97% ± 7%, P=0.9 vs. baseline) 4 weeks later. However, there was no recovery in RNFL thickness (87% ± 3%, P<0.001 vs. baseline). When the suture was removed at week 12, neither function (79% ± 9%, P<0.05) nor RNFL thickness recovered (89% ± 3%, P<0.01) 4 weeks later. Conclusions : RGC dysfunction can be recovered 4 weeks after an 8-week period of mild IOP elevation, but not after a 12-week period. Beyond 12 weeks, IOP reversal only served to prevent further functional decline. This identifies a critical chronic IOP duration that results in irreversible ganglion cell dysfunction. This is an abstract that was submitted for the 2018 ARVO Annual Meeting, held in Honolulu, Hawaii, April 29 - May 3, 2018.
  • Item
    No Preview Available
    Fractalkine-induced microglial vasoregulation occurs within the retina and is altered early in diabetic retinopathy
    Mills, S ; Jobling, A ; Dixon, M ; Bui, B ; Vessey, K ; Phipps, J ; Greferath, U ; Venables, G ; Wong, VHY ; Wong, CHY ; He, Z ; Hui, F ; Young, J ; Tonc, J ; Ivanova, E ; Sagdullaev, B ; Fletcher, E ( 2020)
    Local blood flow control within the CNS is critical to proper function and is dependent on coordination between neurons, glia and blood vessels. Macroglia such as astrocytes and Müller cells, contribute to this neurovascular unit within the brain and retina, respectively. This study explored the role of microglia, the innate immune cell of the CNS, in retinal vasoregulation and highlights changes during early diabetes. Structurally, microglia were found to contact retinal capillaries and neuronal synapses. In the brain and retinal explants, the addition of fractalkine, the sole ligand for monocyte receptor Cx3cr1, resulted in capillary constriction at regions of microglial contact. This vascular regulation was dependent on microglial involvement, since mice lacking Cx3cr1, exhibited no fractalkine-induced constriction. Analysis of the microglial transcriptome identified several vasoactive genes, including angiotensinogen, a constituent of the renin-angiotensin system (RAS). Subsequent functional analysis showed that RAS blockade via candesartan, abolished microglial-induced capillary constriction. Microglial regulation was explored in a rat streptozotocin (STZ) model of diabetic retinopathy. Retinal blood flow was reduced after 4 weeks due to reduced capillary diameter and this was coincident with increased microglial association. Functional assessment showed loss of microglial-capillary response in STZ-treated animals and transcriptome analysis showed evidence of RAS pathway dysregulation in microglia. While candesartan treatment reversed capillary constriction in STZ-treated animals, blood flow remained decreased likely due to dilation of larger vessels. This work shows microglia actively participate in the neurovascular unit, with aberrant microglial-vascular function possibly contributing to the early vascular compromise during diabetic retinopathy.

    Significance Statement

    This work identifies a novel role for microglia, the innate immune cells of the CNS, in the local control of the retinal vasculature and identifies deficits early in diabetes. Microglia contact neurons and vasculature and express several vasoactive agents. Activation of microglial fractalkine-Cx3cr1 signalling leads to capillary constriction and blocking the renin-angiotensin system (RAS) with candesartan abolishes microglial-mediated vasoconstriction in the retina. In early diabetes, reduced retinal blood flow is coincident with capillary constriction, increased microglial-vessel association, loss of microglial-capillary regulation and altered microglial expression of the RAS pathway. While candesartan restores retinal capillary diameter early in diabetes, targeting of microglial-vascular regulation is required to prevent coincident dilation of large retinal vessels and reduced retinal blood flow.
  • Item
    Thumbnail Image
    Fractalkine-induced microglial vasoregulation occurs within the retina and is altered early in diabetic retinopathy
    Mills, SA ; Jobling, A ; Dixon, MA ; Bui, B ; Vessey, KA ; Phipps, JA ; Greferath, U ; Venables, G ; Wong, VHY ; Wong, CHY ; He, Z ; Hui, F ; Young, JC ; Tonc, J ; Ivanova, E ; Sagdullaev, BT ; Fletcher, EL (NATL ACAD SCIENCES, 2021-12-21)
    Local blood flow control within the central nervous system (CNS) is critical to proper function and is dependent on coordination between neurons, glia, and blood vessels. Macroglia, such as astrocytes and Müller cells, contribute to this neurovascular unit within the brain and retina, respectively. This study explored the role of microglia, the innate immune cell of the CNS, in retinal vasoregulation, and highlights changes during early diabetes. Structurally, microglia were found to contact retinal capillaries and neuronal synapses. In the brain and retinal explants, the addition of fractalkine, the sole ligand for monocyte receptor Cx3cr1, resulted in capillary constriction at regions of microglial contact. This vascular regulation was dependent on microglial Cx3cr1 involvement, since genetic and pharmacological inhibition of Cx3cr1 abolished fractalkine-induced constriction. Analysis of the microglial transcriptome identified several vasoactive genes, including angiotensinogen, a constituent of the renin-angiotensin system (RAS). Subsequent functional analysis showed that RAS blockade via candesartan abolished microglial-induced capillary constriction. Microglial regulation was explored in a rat streptozotocin (STZ) model of diabetic retinopathy. Retinal blood flow was reduced after 4 wk due to reduced capillary diameter and this was coincident with increased microglial association. Functional assessment showed loss of microglial-capillary response in STZ-treated animals and transcriptome analysis showed evidence of RAS pathway dysregulation in microglia. While candesartan treatment reversed capillary constriction in STZ-treated animals, blood flow remained decreased likely due to dilation of larger vessels. This work shows microglia actively participate in the neurovascular unit, with aberrant microglial-vascular function possibly contributing to the early vascular compromise during diabetic retinopathy.
  • Item
    Thumbnail Image
    Reversibility of Retinal Ganglion Cell Dysfunction From Chronic IOP Elevation
    Zhao, D ; Wong, VHY ; Nguyen, CTO ; Jobling, AI ; Fletcher, EL ; Vingrys, AJ ; Bui, BV (ASSOC RESEARCH VISION OPHTHALMOLOGY INC, 2019-09)
    PURPOSE: To test the hypothesis that the capacity for retinal ganglion cells to functionally recover from chronic IOP elevation is dependent on the duration of IOP elevation. METHODS: IOP elevation was induced in one eye in anesthetized (isoflurane) adult C57BL6/J mice using a circumlimbal suture. Sutures were left in place for 8 and 16 weeks (n = 30 and 28). In two other groups the suture was cut after 8 and 12 weeks (n = 30 and 28), and ganglion cell function (electroretinography) and retinal structure (optical coherence tomography) were assessed 4 weeks later. Ganglion cell density was quantified by counting RBPMS (RNA-binding protein with multiple splicing)-stained cells. RESULTS: With IOP elevation (∼10 mm Hg above baseline), ganglion cell function declined to 75% ± 8% at 8 weeks and 59% ± 4% at 16 weeks relative to contralateral control eyes. The retinal nerve fiber layer was thinner at 8 (84% ± 4%) and 16 weeks (83% ± 3%), without a significant difference in total retinal thickness. Ganglion cell function recovered with IOP normalization (suture removal) at week 8 (97% ± 7%), but not at week 12 (73% ± 6%). Ganglion cell loss was found in all groups (-8% to -13%). CONCLUSIONS: In the mouse circumlimbal suture model, 12 weeks of IOP elevation resulted in irreversible ganglion cell dysfunction, whereas retinal dysfunction was fully reversible after 8 weeks of IOP elevation.
  • Item
    Thumbnail Image
    Characterization of the Circumlimbal Suture Model of Chronic IOP Elevation in Mice and Assessment of Changes in Gene Expression of Stretch Sensitive Channels.
    Zhao, D ; Nguyen, CTO ; Wong, VHY ; Lim, JKH ; He, Z ; Jobling, AI ; Fletcher, EL ; Chinnery, HR ; Vingrys, AJ ; Bui, BV (Frontiers Media SA, 2017)
    To consider whether a circumlimbal suture can be used to chronically elevate intraocular pressure (IOP) in mice and to assess its effect on retinal structure, function and gene expression of stretch sensitive channels. Anesthetized adult C57BL6/J mice had a circumlimbal suture (10/0) applied around the equator of one eye. In treated eyes (n = 23) the suture was left in place for 12 weeks whilst in sham control eyes the suture was removed at day two (n = 17). Contralateral eyes served as untreated controls. IOP was measured after surgery and once a week thereafter. After 12 weeks, electroretinography (ERG) was performed to assess photoreceptor, bipolar cell and retinal ganglion cell (RGC) function. Retinal structure was evaluated using optical coherence tomography. Retinae were processed for counts of ganglion cell density or for quantitative RT-PCR to quantify purinergic (P2x7, Adora3, Entpd1) or stretch sensitive channel (Panx1, Trpv4) gene expression. Immediately after suture application, IOP spiked to 33 ± 3 mmHg. After 1 day, IOP had recovered to 27 ± 3 mmHg. Between weeks 2 and 12, IOP remained elevated above baseline (control 14 ± 1 mmHg, ocular hypertensive 19 ± 1 mmHg). Suture removal at day 2 (Sham) restored IOP to baseline levels, where it remained through to week 12. ERG analysis showed that 12 weeks of IOP elevation reduced photoreceptor (-15 ± 4%), bipolar cell (-15 ± 4%) and ganglion cell responses (-19 ± 6%) compared to sham controls and respective contralateral eyes (untreated). The retinal nerve fiber layer was thinned in the presence of normal total retinal thickness. Ganglion cell density was reduced across all quadrants (superior -12 ± 5%; temporal, -7% ± 2%; inferior -9 ± 4%; nasal -8 ± 5%). Quantitative RT-PCR revealed a significant increase in Entpd1 gene expression (+11 ± 4%), whilst other genes were not significantly altered (P2x7, Adora3, Trpv4, Panx1). Our results show that circumlimbal ligation produces mild chronic ocular hypertension and retinal dysfunction in mice. Consistent with a sustained change to purinergic signaling we found an up-regulation of Entpd1.
  • Item
    Thumbnail Image
    Susceptibility of Streptozotocin-Induced Diabetic Rat Retinal Function and Ocular Blood Flow to Acute Intraocular Pressure Challenge
    Wong, VHY ; Vingrys, AJ ; Jobling, AI ; Bui, BV (ASSOC RESEARCH VISION OPHTHALMOLOGY INC, 2013-03)
    PURPOSE: To consider the hypothesis that streptozotocin (STZ)-induced hyperglycemia renders rat retinal function and ocular blood flow more susceptible to acute IOP challenge. METHODS: Retinal function (electroretinogram [ERG]) was measured during acute IOP challenge (10100 mm Hg, increments of 5 mm Hg, 3 minutes per step, vitreal cannulation) in adult Long-Evans rats (6 weeks old; citrate: n = 6, STZ: n = 10) 4 weeks after citrate buffer or STZ (65 mg/kg, blood glucose >15 mM) injection. At each IOP, dim and bright flash (-4.56, -1.72 log cd x s x m(-2)) ERG responses were recorded to measure inner retinal and ON-bipolar cell function, respectively. Ocular blood flow (laser Doppler flowmetry; citrate: n = 6, STZ: n = 10) was also measured during acute IOP challenge. Retinas were isolated for quantitative PCR analysis of nitric oxide synthase mRNA expression (endothelial, eNos; inducible, iNos; neuronal, nNos). RESULTS: STZ-induced diabetes increased the susceptibility of inner retinal (IOP at 50% response, 60.1, CI: 57.0-62.0 mm Hg versus citrate: 67.5, CI: 62.1-72.4 mm Hg) and ON-bipolar cell function (STZ: 60.3, CI: 58.0-62.8 mm Hg versus citrate: 65.1, CI: 61.9-68.6 mm Hg) and ocular blood flow (43.9, CI: 40.8-46.8 versus citrate: 53.4, CI: 50.7-56.1 mm Hg) to IOP challenge. Citrate eyes showed elevated eNos mRNA (+49.7%) after IOP stress, an effect not found in STZ-diabetic eyes (-5.7%, P < 0.03). No difference was observed for iNos or nNos (P > 0.05) following IOP elevation. CONCLUSIONS: STZ-induced diabetes increased functional susceptibility during acute IOP challenge. This functional vulnerability is associated with a reduced capacity for diabetic eyes to upregulate eNos expression and to autoregulate blood flow in response to stress.