Anatomy and Neuroscience - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 8 of 8
  • Item
    Thumbnail Image
    Recording of Electrically Evoked Neural Activity and Bladder Pressure Responses in Awake Rats Chronically Implanted With a Pelvic Nerve Array
    Payne, SC ; Wiedmann, NM ; Eiber, CD ; Wong, AW ; Senn, P ; Osborne, PB ; Keast, JR ; Fallon, JB (FRONTIERS MEDIA SA, 2020-12-17)
    Bioelectronic medical devices are well established and widely used in the treatment of urological dysfunction. Approved targets include the sacral S3 spinal root and posterior tibial nerve, but an alternate target is the group of pelvic splanchnic nerves, as these contain sacral visceral sensory and autonomic motor pathways that coordinate storage and voiding functions of the bladder. Here, we developed a device suitable for long-term use in an awake rat model to study electrical neuromodulation of the pelvic nerve (homolog of the human pelvic splanchnic nerves). In male Sprague-Dawley rats, custom planar four-electrode arrays were implanted over the distal end of the pelvic nerve, close to the major pelvic ganglion. Electrically evoked compound action potentials (ECAPs) were reliably detected under anesthesia and in chronically implanted, awake rats up to 8 weeks post-surgery. ECAP waveforms showed three peaks, with latencies that suggested electrical stimulation activated several subpopulations of myelinated A-fiber and unmyelinated C-fiber axons. Chronic implantation of the array did not impact on voiding evoked in awake rats by continuous cystometry, where void parameters were comparable to those published in naïve rats. Electrical stimulation with chronically implanted arrays also induced two classes of bladder pressure responses detected by continuous flow cystometry in awake rats: voiding contractions and non-voiding contractions. No evidence of tissue pathology produced by chronically implanted arrays was detected by immunohistochemical visualization of markers for neuronal injury or noxious spinal cord activation. These results demonstrate a rat pelvic nerve electrode array that can be used for preclinical development of closed loop neuromodulation devices targeting the pelvic nerve as a therapy for neuro-urological dysfunction.
  • Item
    Thumbnail Image
    Simulating bidirectional peripheral neural interfaces in EIDORS
    Eiber, CD ; Keast, JR ; Osborne, PB (IEEE, 2020-01-01)
    Bioelectronic neural interfaces that deliver adaptive therapeutic stimulation in an intelligent manner must be able to sense and stimulate activity within the same nerve. Existing minimally-invasive peripheral neural interfaces can provide a read-out of the aggregate level of activity via electrical recordings of nerve activity, but these recordings are limited in terms of their specificity. Computational simulations can provide fine-grained insight into the contributions of different neural populations to the extracellular recording, but integration of the signals from individual nerve fibers requires knowledge of spread of current in the complex (heterogenous, anisotropic) extracellular space. We have developed a model which uses the open-source EIDORS package for extracellular stimulation and recording in the pelvic nerve. The pelvic nerve is the primary source of autonomic innervation to the pelvic organs, and a prime target for electrical stimulation to treat a variety of voiding disorders. We simulated recordings of spontaneous and electrically-evoked activity using biophysical models for myelinated and unmyelinated axons. As expected, stimulus thresholds depended strongly on both fibre type and electrode-fibre distance. In conclusion, EIDORS can be used to accurately simulate extracellular recording in complex, heterogenous neural geometries.
  • Item
    Thumbnail Image
    A Novel Small Molecule GDNF Receptor RET Agonist, BT13, Promotes Neurite Growth from Sensory Neurons in Vitro and Attenuates Experimental Neuropathy in the Rat
    Sidorova, YA ; Bespalov, MM ; Wong, AW ; Kambur, O ; Jokinen, V ; Lilius, TO ; Suleymanova, I ; Karelson, G ; Rauhala, PV ; Karelson, M ; Osborne, PB ; Keast, JR ; Kalso, EA ; Saarma, M (FRONTIERS MEDIA SA, 2017-06-21)
    Neuropathic pain caused by nerve damage is a common and severe class of chronic pain. Disease-modifying clinical therapies are needed as current treatments typically provide only symptomatic relief; show varying clinical efficacy; and most have significant adverse effects. One approach is targeting either neurotrophic factors or their receptors that normalize sensory neuron function and stimulate regeneration after nerve damage. Two candidate targets are glial cell line-derived neurotrophic factor (GDNF) and artemin (ARTN), as these GDNF family ligands (GFLs) show efficacy in animal models of neuropathic pain (Boucher et al., 2000; Gardell et al., 2003; Wang et al., 2008, 2014). As these protein ligands have poor drug-like properties and are expensive to produce for clinical use, we screened 18,400 drug-like compounds to develop small molecules that act similarly to GFLs (GDNF mimetics). This screening identified BT13 as a compound that selectively targeted GFL receptor RET to activate downstream signaling cascades. BT13 was similar to NGF and ARTN in selectively promoting neurite outgrowth from the peptidergic class of adult sensory neurons in culture, but was opposite to ARTN in causing neurite elongation without affecting initiation. When administered after spinal nerve ligation in a rat model of neuropathic pain, 20 and 25 mg/kg of BT13 decreased mechanical hypersensitivity and normalized expression of sensory neuron markers in dorsal root ganglia. In control rats, BT13 had no effect on baseline mechanical or thermal sensitivity, motor coordination, or weight gain. Thus, small molecule BT13 selectively activates RET and offers opportunities for developing novel disease-modifying medications to treat neuropathic pain.
  • Item
    Thumbnail Image
    Axonal Injury Induces ATF3 in Specific Populations of Sacral Preganglionic Neurons in Male Rats
    Wong, AW ; Osborne, PB ; Keast, JR (FRONTIERS MEDIA SA, 2018-10-24)
    Compared to other neurons of the central nervous system, autonomic preganglionic neurons are unusual because most of their axon lies in the periphery. These axons are vulnerable to injury during surgical procedures, yet in comparison to peripheral neurons and somatic motor neurons, the impact of injury on preganglionic neurons is poorly understood. Here, we have investigated the impact of axotomy on sacral preganglionic neurons, a functionally diverse group of neurons required for micturition, defecation, and sexual function. We have previously observed that after axotomy, the injury-related transcription factor activating transcription factor-3 (ATF3) is upregulated in only half of these neurons (Peddie and Keast, 2011: PMID: 21283532). In the current study, we have investigated if this response is constrained to particular subclasses of preganglionic neurons that have specific functions or signaling properties. Seven days after unilateral pelvic nerve transection, we quantified sacral preganglionic neurons expressing ATF3, many but not all of which co-expressed c-Jun. This response was independent of soma size. Subclasses of sacral preganglionic neurons expressed combinations of somatostatin, calbindin, and neurokinin-1 receptor, each of which showed a similar response to injury. We also found that in contrast to thoracolumbar preganglionic neurons, the heat shock protein-25 (Hsp25) was not detected in naive sacral preganglionic neurons but was upregulated in many of these neurons after axotomy; the majority of these Hsp25 neurons expressed ATF3. Together, these studies reveal the molecular complexity of sacral preganglionic neurons and their responses to injury. The simultaneous upregulation of Hsp25 and ATF3 may indicate a distinct mechanism of regenerative capacity after injury.
  • Item
    Thumbnail Image
    Functional segregation within the pelvic nerve of male rats: a meso- and microscopic analysis
    Bertrand, MM ; Korajkic, N ; Osborne, PB ; Keast, JR (WILEY, 2020-10)
    The pelvic splanchnic nerves are essential for pelvic organ function and have been proposed as targets for neuromodulation. We have focused on the rodent homologue of these nerves, the pelvic nerves. Our goal was to define within the pelvic nerve the projections of organ-specific sensory axons labelled by microinjection of neural tracer (cholera toxin, subunit B) into the bladder, urethra or rectum. We also examined the location of peptidergic sensory axons within the pelvic nerves to determine whether they aggregated separately from sacral preganglionic and paravertebral sympathetic postganglionic axons travelling in the same nerve. To address these aims, microscopy was performed on the major pelvic ganglion (MPG) with attached pelvic nerves, microdissected from young adult male Sprague-Dawley rats (6-8 weeks old) and processed as whole mounts for fluorescence immunohistochemistry. The pelvic nerves were typically composed of five discrete fascicles. Each fascicle contained peptidergic sensory, cholinergic preganglionic and noradrenergic postganglionic axons. Sensory axons innervating the lower urinary tract (LUT) consistently projected in specific fascicles within the pelvic nerves, whereas sensory axons innervating the rectum projected in a complementary group of fascicles. These discrete aggregations of organ-specific sensory projections could be followed along the full length of the pelvic nerves. From the junction of the pelvic nerve with the MPG, sensory axons immunoreactive for calcitonin gene-related peptide (CGRP) showed several distinct patterns of projection: some projected directly to the cavernous nerve, others projected directly across the surface of the MPG to the accessory nerves and a third class entered the MPG, encircling specific cholinergic neurons projecting to the LUT. A subpopulation of preganglionic inputs to noradrenergic MPG neurons also showed CGRP immunoreactivity. Together, these studies reveal new molecular and structural features of the pelvic nerves and suggest functional targets of sensory nerves in the MPG. These anatomical data will facilitate the design of experimental bioengineering strategies to specifically modulate each axon class.
  • Item
    Thumbnail Image
    Identification of a Sacral, Visceral Sensory Transcriptome in Embryonic and Adult Mice
    Smith-Anttila, CJA ; Mason, EA ; Wells, CA ; Aronow, BJ ; Osborne, PB ; Keast, JR (SOC NEUROSCIENCE, 2020)
    Visceral sensory neurons encode distinct sensations from healthy organs and initiate pain states that are resistant to common analgesics. Transcriptome analysis is transforming our understanding of sensory neuron subtypes but has generally focused on somatic sensory neurons or the total population of neurons in which visceral neurons form the minority. Our aim was to define transcripts specifically expressed by sacral visceral sensory neurons, as a step towards understanding the unique biology of these neurons and potentially leading to identification of new analgesic targets for pelvic visceral pain. Our strategy was to identify genes differentially expressed between sacral dorsal root ganglia (DRG) that include somatic neurons and sacral visceral neurons, and adjacent lumbar DRG that comprise exclusively of somatic sensory neurons. This was performed in adult and E18.5 male and female mice. By developing a method to restrict analyses to nociceptive Trpv1 neurons, a larger group of genes were detected as differentially expressed between spinal levels. We identified many novel genes that had not previously been associated with pelvic visceral sensation or nociception. Limited sex differences were detected across the transcriptome of sensory ganglia, but more were revealed in sacral levels and especially in Trpv1 nociceptive neurons. These data will facilitate development of new tools to modify mature and developing sensory neurons and nociceptive pathways.
  • Item
    Thumbnail Image
    Peripheral injury of pelvic visceral sensory nerves alters GFRα (GDNF family receptor alpha) localization in sensory and autonomic pathways of the sacral spinal cord
    Forrest, SL ; Payne, SC ; Keast, JP ; Osborne, PB (FRONTIERS MEDIA SA, 2015-04-10)
    GDNF (glial cell line-derived neurotrophic factor), neurturin and artemin use their co-receptors (GFRα1, GFRα2 and GFRα3, respectively) and the tyrosine kinase Ret for downstream signaling. In rodent dorsal root ganglia (DRG) most of the unmyelinated and some myelinated sensory afferents express at least one GFRα. The adult function of these receptors is not completely elucidated but their activity after peripheral nerve injury can facilitate peripheral and central axonal regeneration, recovery of sensation, and sensory hypersensitivity that contributes to pain. Our previous immunohistochemical studies of spinal cord and sciatic nerve injuries in adult rodents have identified characteristic changes in GFRα1, GFRα2 or GFRα3 in central spinal cord axons of sensory neurons located in DRG. Here we extend and contrast this analysis by studying injuries of the pelvic and hypogastric nerves that contain the majority of sensory axons projecting to the pelvic viscera (e.g., bladder and lower bowel). At 7 d, we detected some effects of pelvic but not hypogastric nerve transection on the ipsilateral spinal cord. In sacral (L6-S1) cord ipsilateral to nerve injury, GFRα1-immunoreactivity (IR) was increased in medial dorsal horn and CGRP-IR was decreased in lateral dorsal horn. Pelvic nerve injury also upregulated GFRα1- and GFRα3-IR terminals and GFRα1-IR neuronal cell bodies in the sacral parasympathetic nucleus that provides the spinal parasympathetic preganglionic output to the pelvic nerve. This evidence suggests peripheral axotomy has different effects on somatic and visceral sensory input to the spinal cord, and identifies sensory-autonomic interactions as a possible site of post-injury regulation.
  • Item
    Thumbnail Image
    Developing a functional urinary bladder: a neuronal context
    Keast, JR ; Smith-Anttila, CJA ; Osborne, PB (FRONTIERS MEDIA SA, 2015-09-01)
    The development of organs occurs in parallel with the formation of their nerve supply. The innervation of pelvic organs (lower urinary tract, hindgut, and sexual organs) is complex and we know remarkably little about the mechanisms that form these neural pathways. The goal of this short review is to use the urinary bladder as an example to stimulate interest in this question. The bladder requires a healthy mature nervous system to store urine and release it at behaviorally appropriate times. Understanding the mechanisms underlying the construction of these neural circuits is not only relevant to defining the basis of developmental problems but may also suggest strategies to restore connectivity and function following injury or disease in adults. The bladder nerve supply comprises multiple classes of sensory, and parasympathetic or sympathetic autonomic effector (motor) neurons. First, we define the developmental endpoint by describing this circuitry in adult rodents. Next we discuss the innervation of the developing bladder, identifying challenges posed by this area of research. Last we provide examples of genetically modified mice with bladder dysfunction and suggest potential neural contributors to this state.