Anatomy and Neuroscience - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 5 of 5
  • Item
    Thumbnail Image
    Resequencing and fine-mapping of the chromosome 12q13-14 locus associated with multiple sclerosis refines the number of implicated genes
    Cortes, A ; Field, J ; Glazov, EA ; Hadler, J ; Stankovich, J ; Brown, MA (OXFORD UNIV PRESS, 2013-06-01)
    Multiple sclerosis (MS) is a common chronic inflammatory disease of the central nervous system. Susceptibility to the disease is affected by both environmental and genetic factors. Genetic factors include haplotypes in the histocompatibility complex (MHC) and over 50 non-MHC loci reported by genome-wide association studies. Amongst these, we previously reported polymorphisms in chromosome 12q13-14 with a protective effect in individuals of European descent. This locus spans 288 kb and contains 17 genes, including several candidate genes which have potentially significant pathogenic and therapeutic implications. In this study, we aimed to fine-map this locus. We have implemented a two-phase study: a variant discovery phase where we have used next-generation sequencing and two target-enrichment strategies [long-range polymerase chain reaction (PCR) and Nimblegen's solution phase hybridization capture] in pools of 25 samples; and a genotyping phase where we genotyped 712 variants in 3577 healthy controls and 3269 MS patients. This study confirmed the association (rs2069502, P = 9.9 × 10(-11), OR = 0.787) and narrowed down the locus of association to an 86.5 kb region. Although the study was unable to pinpoint the key-associated variant, we have identified a 42 (genotyped and imputed) single-nucleotide polymorphism haplotype block likely to harbour the causal variant. No evidence of association at previously reported low-frequency variants in CYP27B1 was observed. As part of the study we compared variant discovery performance using two target-enrichment strategies. We concluded that our pools enriched with Nimblegen's solution phase hybridization capture had better sensitivity to detect true variants than the pools enriched with long-range PCR, whilst specificity was better in the long-range PCR-enriched pools compared with solution phase hybridization capture enriched pools; this result has important implications for the design of future fine-mapping studies.
  • Item
    Thumbnail Image
    Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis
    Beecham, AH ; Patsopoulos, NA ; Xifara, DK ; Davis, MF ; Kemppinen, A ; Cotsapas, C ; Shah, TS ; Spencer, C ; Booth, D ; Goris, A ; Oturai, A ; Saarela, J ; Fontaine, B ; Hemmer, B ; Martin, C ; Zipp, F ; D'Alfonso, S ; Martinelli-Boneschi, F ; Taylor, B ; Harbo, HF ; Kockum, I ; Hillert, J ; Olsson, T ; Ban, M ; Oksenberg, JR ; Hintzen, R ; Barcellos, LF ; Agliardi, C ; Alfredsson, L ; Alizadeh, M ; Anderson, C ; Andrews, R ; Sondergaard, HB ; Baker, A ; Band, G ; Baranzini, SE ; Barizzone, N ; Barrett, J ; Bellenguez, C ; Bergamaschi, L ; Bernardinelli, L ; Berthele, A ; Biberacher, V ; Binder, TMC ; Blackburn, H ; Bomfim, IL ; Brambilla, P ; Broadley, S ; Brochet, B ; Brundin, L ; Buck, D ; Butzkueven, H ; Caillier, SJ ; Camu, W ; Carpentier, W ; Cavalla, P ; Celius, EG ; Coman, I ; Comi, G ; Corrado, L ; Cosemans, L ; Cournu-Rebeix, I ; Cree, BAC ; Cusi, D ; Damotte, V ; Defer, G ; Delgado, SR ; Deloukas, P ; di Sapio, A ; Dilthey, AT ; Donnelly, P ; Dubois, B ; Duddy, M ; Edkins, S ; Elovaara, I ; Esposito, F ; Evangelou, N ; Fiddes, B ; Field, J ; Franke, A ; Freeman, C ; Frohlich, IY ; Galimberti, D ; Gieger, C ; Gourraud, P-A ; Graetz, C ; Graham, A ; Grummel, V ; Guaschino, C ; Hadjixenofontos, A ; Hakonarson, H ; Halfpenny, C ; Hall, G ; Hall, P ; Hamsten, A ; Harley, J ; Harrower, T ; Hawkins, C ; Hellenthal, G ; Hillier, C ; Hobart, J ; Hoshi, M ; Hunt, SE ; Jagodic, M ; Jelcic, I ; Jochim, A ; Kendall, B ; Kermode, A ; Kilpatrick, T ; Koivisto, K ; Konidari, I ; Korn, T ; Kronsbein, H ; Langford, C ; Larsson, M ; Lathrop, M ; Lebrun-Frenay, C ; Lechner-Scott, J ; Lee, MH ; Leone, MA ; Leppa, V ; Liberatore, G ; Lie, BA ; Lill, CM ; Linden, M ; Link, J ; Luessi, F ; Lycke, J ; Macciardi, F ; Mannisto, S ; Manrique, CP ; Martin, R ; Martinelli, V ; Mason, D ; Mazibrada, G ; McCabe, C ; Mero, I-L ; Mescheriakova, J ; Moutsianas, L ; Myhr, K-M ; Nagels, G ; Nicholas, R ; Nilsson, P ; Piehl, F ; Pirinen, M ; Price, SE ; Quach, H ; Reunanen, M ; Robberecht, W ; Robertson, NP ; Rodegher, M ; Rog, D ; Salvetti, M ; Schnetz-Boutaud, NC ; Sellebjerg, F ; Selter, RC ; Schaefer, C ; Shaunak, S ; Shen, L ; Shields, S ; Siffrin, V ; Slee, M ; Sorensen, PS ; Sorosina, M ; Sospedra, M ; Spurkland, A ; Strange, A ; Sundqvist, E ; Thijs, V ; Thorpe, J ; Ticca, A ; Tienari, P ; van Duijn, C ; Visser, EM ; Vucic, S ; Westerlind, H ; Wiley, JS ; Wilkins, A ; Wilson, JF ; Winkelmann, J ; Zajicek, J ; Zindler, E ; Haines, JL ; Pericak-Vance, MA ; Ivinson, AJ ; Stewart, G ; Hafler, D ; Hauser, SL ; Compston, A ; McVean, G ; De Jager, P ; Sawcer, SJ ; McCauley, JL (NATURE PUBLISHING GROUP, 2013-11)
    Using the ImmunoChip custom genotyping array, we analyzed 14,498 subjects with multiple sclerosis and 24,091 healthy controls for 161,311 autosomal variants and identified 135 potentially associated regions (P < 1.0 × 10(-4)). In a replication phase, we combined these data with previous genome-wide association study (GWAS) data from an independent 14,802 subjects with multiple sclerosis and 26,703 healthy controls. In these 80,094 individuals of European ancestry, we identified 48 new susceptibility variants (P < 5.0 × 10(-8)), 3 of which we found after conditioning on previously identified variants. Thus, there are now 110 established multiple sclerosis risk variants at 103 discrete loci outside of the major histocompatibility complex. With high-resolution Bayesian fine mapping, we identified five regions where one variant accounted for more than 50% of the posterior probability of association. This study enhances the catalog of multiple sclerosis risk variants and illustrates the value of fine mapping in the resolution of GWAS signals.
  • Item
    Thumbnail Image
    The CYP27B1 variant associated with an increased risk of autoimmune disease is underexpressed in tolerizing dendritic cells
    Shahijanian, F ; Parnell, GP ; McKay, FC ; Gatt, PN ; Shojoei, M ; O'Connor, KS ; Schibeci, SD ; Brilot, F ; Liddle, C ; Batten, M ; Stewart, GJ ; Booth, DR (OXFORD UNIV PRESS, 2014-03-15)
    Genome-wide association studies have identified a linkage disequilibrium (LD) block on chromosome 12 associated with multiple sclerosis (MS), type 1 diabetes and other autoimmune diseases. This block contains CYP27B1, which catalyzes the conversion of 25 vitamin D3 (VitD3) to 1,25VitD3. Fine-mapping analysis has failed to identify which of the 17 genes in this block is most associated with MS. We have previously used a functional approach to identify the causal gene. We showed that the expression of several genes in this block in whole blood is highly associated with the MS risk allele, but not CYP27B1. Here, we show that CYP27B1 is predominantly expressed in dendritic cells (DCs). Its expression in these cells is necessary for their response to VitD, which is known to upregulate pathways involved in generating a tolerogenic DC phenotype. Here, we utilize a differentiation protocol to generate inflammatory (DC1) and tolerogenic (DC2) DCs, and show that for the MS risk allele CYP27B1 is underexpressed in DCs, especially DC2s. Of the other Chr12 LD block genes expressed in these cells, only METT21B expression was as affected by the genotype. Another gene associated with autoimmune diseases, CYP24A1, catabolizes 1,25 VitD3, and is predominantly expressed in DCs, but equally between DC1s and DC2s. Overall, these data are consistent with the hypothesis that reduced VitD pathway gene upregulation in DC2s of carriers of the risk haplotype of CYP27B1 contributes to autoimmune diseases. These data support therapeutic approaches aimed at targeting VitD effects on DCs.
  • Item
    Thumbnail Image
    The MS Risk Allele of CD40 Is Associated with Reduced Cell-Membrane Bound Expression in Antigen Presenting Cells: Implications for Gene Function
    Field, J ; Shahijanian, F ; Schibeci, S ; Johnson, L ; Gresle, M ; Laverick, L ; Parnell, G ; Stewart, G ; McKay, F ; Kilpatrick, T ; Butzkueven, H ; Booth, D ; Haziot, A (PUBLIC LIBRARY SCIENCE, 2015-06-11)
    Human genetic and animal studies have implicated the costimulatory molecule CD40 in the development of multiple sclerosis (MS). We investigated the cell specific gene and protein expression variation controlled by the CD40 genetic variant(s) associated with MS, i.e. the T-allele at rs1883832. Previously we had shown that the risk allele is expressed at a lower level in whole blood, especially in people with MS. Here, we have defined the immune cell subsets responsible for genotype and disease effects on CD40 expression at the mRNA and protein level. In cell subsets in which CD40 is most highly expressed, B lymphocytes and dendritic cells, the MS-associated risk variant is associated with reduced CD40 cell-surface protein expression. In monocytes and dendritic cells, the risk allele additionally reduces the ratio of expression of full-length versus truncated CD40 mRNA, the latter encoding secreted CD40. We additionally show that MS patients, regardless of genotype, express significantly lower levels of CD40 cell-surface protein compared to unaffected controls in B lymphocytes. Thus, both genotype-dependent and independent down-regulation of cell-surface CD40 is a feature of MS. Lower expression of a co-stimulator of T cell activation, CD40, is therefore associated with increased MS risk despite the same CD40 variant being associated with reduced risk of other inflammatory autoimmune diseases. Our results highlight the complexity and likely individuality of autoimmune pathogenesis, and could be consistent with antiviral and/or immunoregulatory functions of CD40 playing an important role in protection from MS.
  • Item
    Thumbnail Image
    A rare P2X7 variant Arg307Gln with absent pore formation function protects against neuroinflammation in multiple sclerosis
    Gu, BJ ; Field, J ; Dutertre, S ; Ou, A ; Kilpatrick, TJ ; Lechner-Scott, J ; Scott, R ; Lea, R ; Taylor, BV ; Stankovich, J ; Butzkueven, H ; Gresle, M ; Laws, SM ; Petrou, S ; Hoffjan, S ; Akkad, DA ; Graham, CA ; Hawkins, S ; Glaser, A ; Bedri, SK ; Hillert, J ; Matute, C ; Antiguedad, A ; Wiley, JS (OXFORD UNIV PRESS, 2015-10-01)
    Multiple sclerosis (MS) is a chronic relapsing-remitting inflammatory disease of the central nervous system characterized by oligodendrocyte damage, demyelination and neuronal death. Genetic association studies have shown a 2-fold or greater prevalence of the HLA-DRB1*1501 allele in the MS population compared with normal Caucasians. In discovery cohorts of Australasian patients with MS (total 2941 patients and 3008 controls), we examined the associations of 12 functional polymorphisms of P2X7, a microglial/macrophage receptor with proinflammatory effects when activated by extracellular adenosine triphosphate (ATP). In discovery cohorts, rs28360457, coding for Arg307Gln was associated with MS and combined analysis showed a 2-fold lower minor allele frequency compared with controls (1.11% for MS and 2.15% for controls, P = 0.0000071). Replication analysis of four independent European MS case-control cohorts (total 2140 cases and 2634 controls) confirmed this association [odds ratio (OR) = 0.69, P = 0.026]. A meta-analysis of all Australasian and European cohorts indicated that Arg307Gln confers a 1.8-fold protective effect on MS risk (OR = 0.57, P = 0.0000024). Fresh human monocytes heterozygous for Arg307Gln have >85% loss of 'pore' function of the P2X7 receptor measured by ATP-induced ethidium uptake. Analysis shows Arg307Gln always occurred with 270His suggesting a single 307Gln-270His haplotype that confers dominant negative effects on P2X7 function and protection against MS. Modeling based on the homologous zP2X4 receptor showed Arg307 is located in a region rich in basic residues located only 12 Å from the ligand binding site. Our data show the protective effect against MS of a rare genetic variant of P2RX7 with heterozygotes showing near absent proinflammatory 'pore' function.