Anatomy and Neuroscience - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    White matter tract conductivity is resistant to wide variations in paranodal structure and myelin thickness accompanying the loss of Tyro3: an experimental and simulated analysis
    Blades, F ; Chambers, JD ; Aumann, TD ; Nguyen, CTO ; Wong, VHY ; Aprico, A ; Nwoke, EC ; Bui, B ; Grayden, DB ; Kilpatrick, TJ ; Binder, MD (SPRINGER HEIDELBERG, 2022-07)
    Myelination within the central nervous system (CNS) is crucial for the conduction of action potentials by neurons. Variation in compact myelin morphology and the structure of the paranode are hypothesised to have significant impact on the speed of action potentials. There are, however, limited experimental data investigating the impact of changes in myelin structure upon conductivity in the central nervous system. We have used a genetic model in which myelin thickness is reduced to investigate the effect of myelin alterations upon action potential velocity. A detailed examination of the myelin ultrastructure of mice in which the receptor tyrosine kinase Tyro3 has been deleted showed that, in addition to thinner myelin, these mice have significantly disrupted paranodes. Despite these alterations to myelin and paranodal structure, we did not identify a reduction in conductivity in either the corpus callosum or the optic nerve. Exploration of these results using a mathematical model of neuronal conductivity predicts that the absence of Tyro3 would lead to reduced conductivity in single fibres, but would not affect the compound action potential of multiple myelinated neurons as seen in neuronal tracts. Our data highlight the importance of experimental assessment of conductivity and suggests that simple assessment of structural changes to myelin is a poor predictor of neural functional outcomes.
  • Item
    Thumbnail Image
    Reversibility of Retinal Ganglion Cell Dysfunction From Chronic IOP Elevation
    Zhao, D ; Wong, VHY ; Nguyen, CTO ; Jobling, AI ; Fletcher, EL ; Vingrys, AJ ; Bui, BV (ASSOC RESEARCH VISION OPHTHALMOLOGY INC, 2019-09)
    PURPOSE: To test the hypothesis that the capacity for retinal ganglion cells to functionally recover from chronic IOP elevation is dependent on the duration of IOP elevation. METHODS: IOP elevation was induced in one eye in anesthetized (isoflurane) adult C57BL6/J mice using a circumlimbal suture. Sutures were left in place for 8 and 16 weeks (n = 30 and 28). In two other groups the suture was cut after 8 and 12 weeks (n = 30 and 28), and ganglion cell function (electroretinography) and retinal structure (optical coherence tomography) were assessed 4 weeks later. Ganglion cell density was quantified by counting RBPMS (RNA-binding protein with multiple splicing)-stained cells. RESULTS: With IOP elevation (∼10 mm Hg above baseline), ganglion cell function declined to 75% ± 8% at 8 weeks and 59% ± 4% at 16 weeks relative to contralateral control eyes. The retinal nerve fiber layer was thinner at 8 (84% ± 4%) and 16 weeks (83% ± 3%), without a significant difference in total retinal thickness. Ganglion cell function recovered with IOP normalization (suture removal) at week 8 (97% ± 7%), but not at week 12 (73% ± 6%). Ganglion cell loss was found in all groups (-8% to -13%). CONCLUSIONS: In the mouse circumlimbal suture model, 12 weeks of IOP elevation resulted in irreversible ganglion cell dysfunction, whereas retinal dysfunction was fully reversible after 8 weeks of IOP elevation.
  • Item
    Thumbnail Image
    Tyro3 Contributes to Retinal Ganglion Cell Function, Survival and Dendritic Density in the Mouse Retina
    Blades, F ; Wong, VHY ; Nguyen, CTO ; Bui, BV ; Kilpatrick, TJ ; Binder, MD (FRONTIERS MEDIA SA, 2020-08-14)
    Retinal ganglion cells (RGCs) are the only output neurons of the vertebrate retina, integrating signals from other retinal neurons and transmitting information to the visual centers of the brain. The death of RGCs is a common outcome in many optic neuropathies, such as glaucoma, demyelinating optic neuritis and ischemic optic neuropathy, resulting in visual defects and blindness. There are currently no therapies in clinical use which can prevent RGC death in optic neuropathies; therefore, the identification of new targets for supporting RGC survival is crucial in the development of novel treatments for eye diseases. In this study we identify that the receptor tyrosine kinase, Tyro3, is critical for normal neuronal function in the adult mouse retina. The loss of Tyro3 results in a reduction in photoreceptor and RGC function as measured using electroretinography. The reduction in RGC function was associated with a thinner retinal nerve fiber layer and fewer RGCs. In the central retina, independent of the loss of RGCs, Tyro3 deficiency resulted in a dramatic reduction in the number of RGC dendrites in the inner plexiform layer. Our results show that Tyro3 has a novel, previously unidentified role in retinal function, RGC survival and RGC morphology. The Tyro3 pathway could therefore provide an alternative, targetable pathway for RGC protective therapeutics.
  • Item
    Thumbnail Image
    Characterization of the Circumlimbal Suture Model of Chronic IOP Elevation in Mice and Assessment of Changes in Gene Expression of Stretch Sensitive Channels.
    Zhao, D ; Nguyen, CTO ; Wong, VHY ; Lim, JKH ; He, Z ; Jobling, AI ; Fletcher, EL ; Chinnery, HR ; Vingrys, AJ ; Bui, BV (Frontiers Media SA, 2017)
    To consider whether a circumlimbal suture can be used to chronically elevate intraocular pressure (IOP) in mice and to assess its effect on retinal structure, function and gene expression of stretch sensitive channels. Anesthetized adult C57BL6/J mice had a circumlimbal suture (10/0) applied around the equator of one eye. In treated eyes (n = 23) the suture was left in place for 12 weeks whilst in sham control eyes the suture was removed at day two (n = 17). Contralateral eyes served as untreated controls. IOP was measured after surgery and once a week thereafter. After 12 weeks, electroretinography (ERG) was performed to assess photoreceptor, bipolar cell and retinal ganglion cell (RGC) function. Retinal structure was evaluated using optical coherence tomography. Retinae were processed for counts of ganglion cell density or for quantitative RT-PCR to quantify purinergic (P2x7, Adora3, Entpd1) or stretch sensitive channel (Panx1, Trpv4) gene expression. Immediately after suture application, IOP spiked to 33 ± 3 mmHg. After 1 day, IOP had recovered to 27 ± 3 mmHg. Between weeks 2 and 12, IOP remained elevated above baseline (control 14 ± 1 mmHg, ocular hypertensive 19 ± 1 mmHg). Suture removal at day 2 (Sham) restored IOP to baseline levels, where it remained through to week 12. ERG analysis showed that 12 weeks of IOP elevation reduced photoreceptor (-15 ± 4%), bipolar cell (-15 ± 4%) and ganglion cell responses (-19 ± 6%) compared to sham controls and respective contralateral eyes (untreated). The retinal nerve fiber layer was thinned in the presence of normal total retinal thickness. Ganglion cell density was reduced across all quadrants (superior -12 ± 5%; temporal, -7% ± 2%; inferior -9 ± 4%; nasal -8 ± 5%). Quantitative RT-PCR revealed a significant increase in Entpd1 gene expression (+11 ± 4%), whilst other genes were not significantly altered (P2x7, Adora3, Trpv4, Panx1). Our results show that circumlimbal ligation produces mild chronic ocular hypertension and retinal dysfunction in mice. Consistent with a sustained change to purinergic signaling we found an up-regulation of Entpd1.