Anatomy and Neuroscience - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    Chronic isolation stress is associated with increased colonic and motor symptoms in the A53T mouse model of Parkinson's disease
    Diwakarla, S ; Finkelstein, DI ; Constable, R ; Artaiz, O ; Di Natale, M ; McQuade, RM ; Lei, E ; Chai, X-Y ; Ringuet, MT ; Fothergill, LJ ; Lawson, VA ; Ellett, LJ ; Berger, JP ; Furness, JB (WILEY, 2020-03)
    BACKGROUND: Chronic stress exacerbates motor deficits and increases dopaminergic cell loss in several rodent models of Parkinson's disease (PD). However, little is known about effects of stress on gastrointestinal (GI) dysfunction, a common non-motor symptom of PD. We aimed to determine whether chronic stress exacerbates GI dysfunction in the A53T mouse model of PD and whether this relates to changes in α-synuclein distribution. METHODS: Chronic isolation stress was induced by single-housing WT and homozygote A53T mice between 5 and 15 months of age. GI and motor function were compared with mice that had been group-housed. KEY RESULTS: Chronic isolation stress increased plasma corticosterone and exacerbated deficits in colonic propulsion and whole-gut transit in A53T mice and also increased motor deficits. However, our results indicated that the novel environment-induced defecation response, a common method used to evaluate colorectal function, was not a useful test to measure exacerbation of GI dysfunction, most likely because of the reported reduced level of anxiety in A53T mice. A53T mice had lower corticosterone levels than WT mice under both housing conditions, but single-housing increased levels for both genotypes. Enteric neuropathy was observed in aging A53T mice and A53T mice had a greater accumulation of alpha-synuclein (αsyn) in myenteric ganglia under both housing conditions. CONCLUSIONS & INFERENCES: Chronic isolation stress exacerbates PD-associated GI dysfunction, in addition to increasing motor deficits. However, these changes in GI symptoms are not directly related to corticosterone levels, worsened enteric neuropathy, or enteric αsyn accumulation.
  • Item
    Thumbnail Image
    Analysis of Bioavailability and Induction of Glutathione Peroxidase by Dietary Nanoelemental, Organic and Inorganic Selenium
    Ringuet, MT ; Hunne, B ; Lenz, M ; Bravo, DM ; Furness, JB (MDPI, 2021-04)
    Dietary organic selenium (Se) is commonly utilized to increase formation of selenoproteins, including the major antioxidant protein, glutathione peroxidase (GPx). Inorganic Se salts, such as sodium selenite, are also incorporated into selenoproteins, and there is evidence that nanoelemental Se added to the diet may also be effective. We conducted two trials, the first investigated inorganic Se (selenite), organic Se (L-selenomethionine) and nanoelemental Se, in conventional mice. Their bioavailability and effectiveness to increase GPx activity were examined. The second trial focused on determining the mechanism by which dietary Se is incorporated into tissue, utilising both conventional and germ-free (GF) mice. Mice were fed a diet with minimal Se, 0.018 parts per million (ppm), and diets with Se supplementation, to achieve 0.07, 0.15, 0.3 and 1.7 ppm Se, for 5 weeks (first trial). Mass spectrometry, Western blotting and enzymatic assays were used to investigate bioavailability, protein levels and GPx activity in fresh frozen tissue (liver, ileum, plasma, muscle and feces) from the Se fed animals. Inorganic, organic and nanoelemental Se were all effectively incorporated into tissues. The high Se diet (1.7 ppm) resulted in the highest Se levels in all tissues and plasma, independent of the Se source. Interestingly, despite being ~11 to ~25 times less concentrated than the high Se, the lower Se diets (0.07; 0.15) resulted in comparably high Se levels in liver, ileum and plasma for all Se sources. GPx protein levels and enzyme activity were significantly increased by each diet, relative to control. We hypothesised that bacteria may be a vector for the conversion of nanoelemental Se, perhaps in exchange for S in sulphate metabolising bacteria. We therefore investigated Se incorporation from low sulphate diets and in GF mice. All forms of selenium were bioavailable and similarly significantly increased the antioxidant capability of GPx in the intestine and liver of GF mice and mice with sulphate free diets. Se from nanoelemental Se resulted in similar tissue levels to inorganic and organic sources in germ free mice. Thus, endogenous mechanisms, not dependent on bacteria, reduce nanoelemental Se to the metabolite selenide that is then converted to selenophosphate, synthesised to selenocysteine, and incorporated into selenoproteins. In particular, the similar efficacy of nanoelemental Se in comparison to organic Se in both trials is important in the view of the currently limited cheap sources of Se.
  • Item
    Thumbnail Image
    Dopamine and ghrelin receptor co-expression and interaction in the spinal defecation centers
    Furness, JB ; Pustovit, R ; Syder, AJ ; Ringuet, MT ; Yoo, EJ ; Fanjul, A ; Wykosky, J ; Fothergill, LJ ; Whitfield, EA ; Furness, SGB (WILEY, 2021-05)
    BACKGROUND: Dopamine receptor 2 (DRD2) and ghrelin receptor (GHSR1a) agonists both stimulate defecation by actions at the lumbosacral defecation center. Dopamine is in nerve terminals surrounding autonomic neurons of the defecation center, whereas ghrelin is not present in the spinal cord. Dopamine at D2 receptors generally inhibits neurons, but at the defecation center, its effect is excitatory. METHODS: In vivo recording of defecation and colorectal propulsion was used to investigate interaction between DRD2 and GHSR1a. Localization studies were used to determine sites of receptor expression in rat and human spinal cord. KEY RESULTS: Dopamine, and the DRD2 agonist, quinpirole, directly applied to the lumbosacral cord, caused defecation. The effect of intrathecal dopamine was inhibited by the GHSR1a antagonist, YIL781, given systemically, but YIL781 was not an antagonist at DRD2. The DRD2 agonist, pramipexole, administered systemically caused colorectal propulsion that was prevented when the pelvic nerves were cut. Drd2 and Ghsr were expressed together in autonomic preganglionic neurons at the level of the defecation centers in rat and human. Behaviorally induced defecation (caused by water avoidance stress) was reduced by the DRD2 antagonist, sulpiride. We had previously shown it is reduced by YIL781. CONCLUSIONS AND INFERENCES: Our observations imply that dopamine is a transmitter of the defecation pathways whose actions are exerted through interacting dopamine (D2) and ghrelin receptors on lumbosacral autonomic neurons that project to the colorectum. The results explain the excitation by dopamine agonists and the conservation of GHSR1a in the absence of ghrelin.