Anatomy and Neuroscience - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 15
  • Item
    Thumbnail Image
    Group I Metabotropic Glutamate Receptors Modulate Motility and Enteric Neural Activity in the Mouse Colon
    Leembruggen, AJL ; Lu, Y ; Wang, H ; Uzungil, V ; Renoir, T ; Hannan, AJJ ; Stamp, LAA ; Hao, MMM ; Bornstein, JCC (MDPI, 2023-01)
    Glutamate is the major excitatory neurotransmitter in the central nervous system, and there is evidence that Group-I metabotropic glutamate receptors (mGlu1 and mGlu5) have established roles in excitatory neurotransmission and synaptic plasticity. While glutamate is abundantly present in the gut, it plays a smaller role in neurotransmission in the enteric nervous system. In this study, we examined the roles of Group-I mGlu receptors in gastrointestinal function. We investigated the expression of Grm1 (mGlu1) and Grm5 (mGlu5) in the mouse myenteric plexus using RNAscope in situ hybridization. Live calcium imaging and motility analysis were performed on ex vivo preparations of the mouse colon. mGlu5 was found to play a role in excitatory enteric neurotransmission, as electrically-evoked calcium transients were sensitive to the mGlu5 antagonist MPEP. However, inhibition of mGlu5 activity did not affect colonic motor complexes (CMCs). Instead, inhibition of mGlu1 using BAY 36-7620 reduced CMC frequency but did not affect enteric neurotransmission. These data highlight complex roles for Group-I mGlu receptors in myenteric neuron activity and colonic function.
  • Item
    Thumbnail Image
    A Novel Method for Identifying the Transition Zone in Long-Segment Hirschsprung Disease: Investigating the Muscle Unit to Ganglion Ratio
    Yang, W ; Pham, J ; King, SK ; Newgreen, DF ; Young, HM ; Stamp, LA ; Hao, MM (MDPI, 2022-08)
    Hirschsprung disease (HSCR) is characterised by the absence of enteric ganglia along variable lengths of the distal bowel. Current gold standard treatment involves the surgical resection of the defective, aganglionic bowel. Clear and reliable distinction of the normoganglionated bowel from the transition zone is key for successful resection of the entire defective bowel, and the avoidance of subsequent postoperative complications. However, the intraoperative nature of the tissue analysis and the variability of patient samples, sample preparation, and operator objectivity, make reproducible identification of the transition zone difficult. Here, we have described a novel method for using muscle units as a distinctive landmark for quantifying the density of enteric ganglia in resection specimens from HSCR patients. We show that the muscle unit to ganglion ratio is greater in the transition zone when compared with the proximal, normoganglionated region for long-segment HSCR patients. Patients with short-segment HSCR were also investigated, however, the muscle unit to ganglion ratio was not significantly different in these patients. Immunohistochemical examination of individual ganglia showed that there were no differences in the proportions of either enteric neurons or glial cells through the different regions of the resected colon. In addition, we identified that the size of enteric ganglia was smaller for patients that went on to develop HSCR associated enterocolitis; although the density of ganglia, as determined by the muscle unit to ganglia ratio, was not different when compared with patients that had no further complications. This suggests that subtle changes in the enteric nervous system, even in the "normoganglionated" colon, could be involved in changes in immune function and subsequent bacterial dysbiosis.
  • Item
    Thumbnail Image
    IL-33 promotes gastric tumour growth in concert with activation and recruitment of inflammatory myeloid cells.
    Tran, CP ; Scurr, M ; O'Connor, L ; Buzzelli, JN ; Ng, GZ ; Chin, SCN ; Stamp, LA ; Minamoto, T ; Giraud, AS ; Judd, LM ; Sutton, P ; Menheniott, TR (Impact Journals, LLC, 2022)
    Interleukin-33 (IL-33) is an IL-1 family cytokine known to promote T-helper (Th) type 2 immune responses that are often deregulated in gastric cancer (GC). IL-33 is overexpressed in human gastric tumours suggesting a role in driving GC progression although a causal link has not been proven. Here, we investigated the impact of IL-33 genetic deficiency in the well-characterized gp130 F/F mouse model of GC. Expression of IL-33 (and it's cognate receptor, ST2) was increased in human and mouse GC progression. IL-33 deficient gp130 F/F /Il33 -/- mice had reduced gastric tumour growth and reduced recruitment of pro-tumorigenic myeloid cells including key mast cell subsets and type-2 (M2) macrophages. Cell sorting of gastric tumours revealed that IL-33 chiefly localized to gastric (tumour) epithelial cells and was absent from tumour-infiltrating immune cells (except modest IL-33 enrichment within CD11b+ CX3CR1+CD64+MHCII+ macrophages). By contrast, ST2 was absent from gastric epithelial cells and localized exclusively within the (non-macrophage) immune cell fraction together with mast cell markers, Mcpt1 and Mcpt2. Collectively, we show that IL-33 is required for gastric tumour growth and provide evidence of a likely mechanism by which gastric epithelial-derived IL-33 drives mobilization of tumour-promoting inflammatory myeloid cells.
  • Item
    Thumbnail Image
    Development, Diversity, and Neurogenic Capacity of Enteric Glia
    Boesmans, W ; Nash, A ; Tasnady, KR ; Yang, W ; Stamp, LA ; Hao, MM (FRONTIERS MEDIA SA, 2022-01-17)
    Enteric glia are a fascinating population of cells. Initially identified in the gut wall as the "support" cells of the enteric nervous system, studies over the past 20 years have unveiled a vast array of functions carried out by enteric glia. They mediate enteric nervous system signalling and play a vital role in the local regulation of gut functions. Enteric glial cells interact with other gastrointestinal cell types such as those of the epithelium and immune system to preserve homeostasis, and are perceptive to luminal content. Their functional versatility and phenotypic heterogeneity are mirrored by an extensive level of plasticity, illustrated by their reactivity in conditions associated with enteric nervous system dysfunction and disease. As one of the hallmarks of their plasticity and extending their operative relationship with enteric neurons, enteric glia also display neurogenic potential. In this review, we focus on the development of enteric glial cells, and the mechanisms behind their heterogeneity in the adult gut. In addition, we discuss what is currently known about the role of enteric glia as neural precursors in the enteric nervous system.
  • Item
    Thumbnail Image
    Surgical method to prevent early death of neonatal rat pups with Hirschsprung disease, thus permitting development of long-term therapeutic approaches
    Stamp, LA ; Lei, E ; Liew, JJM ; Pustovit, R ; Hao, MM ; Croaker, DH ; Furness, JB ; Adams, CD (OXFORD UNIV PRESS, 2022-01-10)
    Hirschsprung disease occurs when children are born with no intrinsic nerve cells in varying lengths of the large intestine. In the most severe cases, neurons are also missing from the distal part of the small intestine. Nerve-mediated relaxation of the aganglionic bowel fails and fecal matter accumulates in the more proximal regions of the intestine. This is life threatening. Perforation of the bowel can ensue, causing sepsis and in some cases, death of the infant. Repopulation of the colon with neural stem cells is a potential therapy, but for this to be successful the patient or experimental animal needs to survive long enough for neural precursors to differentiate and make appropriate connections. We have developed a surgical procedure that can be applied to rats with Hirschsprung disease. A stoma was created to allow the normal bowel to empty and a second stoma leading to the aganglionic bowel was also created. This allowed homozygous mutants that would usually die at less than 3 weeks of age to survive into adulthood. During this time, the rats also required post-operative care of their stomas. The interventions we describe provide an animal model of Hirschsprung disease that is suited to assess the effectiveness of cell therapies in the treatment of this condition.
  • Item
    Thumbnail Image
    Recent advances in regenerative medicine to treat enteric neuropathies: use of human cells
    Stamp, LA ; Young, HM (WILEY, 2017-01)
    As current options for treating most enteric neuropathies are either non-effective or associated with significant ongoing problems, cell therapy is a potential attractive possibility to treat congenital and acquired neuropathies. Studies using animal models have shown that following transplantation of enteric neural progenitors into the bowel of recipients, the transplanted cells migrate, proliferate, and generate neurons that are electrically active and receive synaptic inputs. Recent studies have transplanted human enteric neural progenitors into the mouse colon and shown engraftment. In this article, we summarize the significance of these recent advances and discuss priorities for future research that might lead to the use of regenerative medicine to treat enteric neuropathies in the clinic.
  • Item
    Thumbnail Image
    Transcriptional analysis of early lineage commitment in human embryonic stem cells
    Laslett, AL ; Grimmond, S ; Gardiner, B ; Stamp, L ; Lin, A ; Hawes, SM ; Wormald, S ; Nikolic-Paterson, D ; Haylock, D ; Pera, MF (BMC, 2007-03-02)
    BACKGROUND: The mechanisms responsible for the maintenance of pluripotency in human embryonic stem cells, and those that drive their commitment into particular differentiation lineages, are poorly understood. In fact, even our knowledge of the phenotype of hESC is limited, because the immunological and molecular criteria presently used to define this phenotype describe the properties of a heterogeneous population of cells. RESULTS: We used a novel approach combining immunological and transcriptional analysis (immunotranscriptional profiling) to compare gene expression in hESC populations at very early stages of differentiation. Immunotranscriptional profiling enabled us to identify novel markers of stem cells and their differentiated progeny, as well as novel potential regulators of hESC commitment and differentiation. The data show clearly that genes associated with the pluripotent state are downregulated in a coordinated fashion, and that they are co-expressed with lineage specific transcription factors in a continuum during the early stages of stem cell differentiation. CONCLUSION: These findings, that show that maintenance of pluripotency and lineage commitment are dynamic, interactive processes in hESC cultures, have important practical implications for propagation and directed differentiation of these cells, and for the interpretation of mechanistic studies of hESC renewal and commitment. Since embryonic stem cells at defined stages of commitment can be isolated in large numbers by immunological means, they provide a powerful model for studying molecular genetics of stem cell commitment in the embryo.
  • Item
    Thumbnail Image
    Enteric Neural Cells From Hirschsprung Disase Patients Form Ganglia in Autologous Aneuronal Colon
    Rollo, BN ; Zhang, D ; Stamp, LA ; Menheniott, TR ; Stathopoulos, L ; Denham, M ; Dottori, M ; King, SK ; Hutson, JM ; Newgreen, DF (ELSEVIER INC, 2016-01)
    BACKGROUND & AIMS: Hirschsprung disease (HSCR) is caused by failure of cells derived from the neural crest (NC) to colonize the distal bowel in early embryogenesis, resulting in absence of the enteric nervous system (ENS) and failure of intestinal transit postnatally. Treatment is by distal bowel resection, but neural cell replacement may be an alternative. We tested whether aneuronal (aganglionic) colon tissue from patients may be colonized by autologous ENS-derived cells. METHODS: Cells were obtained and cryopreserved from 31 HSCR patients from the proximal resection margin of colon, and ENS cells were isolated using flow cytometry for the NC marker p75 (nine patients). Aneuronal colon tissue was obtained from the distal resection margin (23 patients). ENS cells were assessed for NC markers immunohistologically and by quantitative reverse-transcription polymerase chain reaction, and mitosis was detected by ethynyl-2'-deoxyuridine labeling. The ability of human HSCR postnatal ENS-derived cells to colonize the embryonic intestine was demonstrated by organ coculture with avian embryo gut, and the ability of human postnatal HSCR aneuronal colon muscle to support ENS formation was tested by organ coculture with embryonic mouse ENS cells. Finally, the ability of HSCR patient ENS cells to colonize autologous aneuronal colon muscle tissue was assessed. RESULTS: ENS-derived p75-sorted cells from patients expressed multiple NC progenitor and differentiation markers and proliferated in culture under conditions simulating Wnt signaling. In organ culture, patient ENS cells migrated appropriately in aneural quail embryo gut, and mouse embryo ENS cells rapidly spread, differentiated, and extended axons in patient aneuronal colon muscle tissue. Postnatal ENS cells derived from HSCR patients colonized autologous aneuronal colon tissue in cocultures, proliferating and differentiating as neurons and glia. CONCLUSIONS: NC-lineage cells can be obtained from HSCR patient colon and can form ENS-like structures in aneuronal colonic muscle from the same patient.
  • Item
    Thumbnail Image
    Exposure to GDNF Enhances the Ability of Enteric Neural Progenitors to Generate an Enteric Nervous System
    McKeown, SJ ; Mohsenipour, M ; Bergner, AJ ; Young, HM ; Stamp, LA (CELL PRESS, 2017-02-14)
    Cell therapy is a promising approach to generate an enteric nervous system (ENS) and treat enteric neuropathies. However, for translation to the clinic, it is highly likely that enteric neural progenitors will require manipulation prior to transplantation to enhance their ability to migrate and generate an ENS. In this study, we examine the effects of exposure to several factors on the ability of ENS progenitors, grown as enteric neurospheres, to migrate and generate an ENS. Exposure to glial-cell-line-derived neurotrophic factor (GDNF) resulted in a 14-fold increase in neurosphere volume and a 12-fold increase in cell number. Following co-culture with embryonic gut or transplantation into the colon of postnatal mice in vivo, cells derived from GDNF-treated neurospheres showed a 2-fold increase in the distance migrated compared with controls. Our data show that the ability of enteric neurospheres to generate an ENS can be enhanced by exposure to appropriate factors.
  • Item
    Thumbnail Image
    Kif1bp loss in mice leads to defects in the peripheral and central nervous system and perinatal death
    Hirst, CS ; Stamp, LA ; Bergner, AJ ; Hao, MM ; Tran, MX ; Morgan, JM ; Dutschmann, M ; Allen, AM ; Paxinos, G ; Furlong, TM ; McKeown, SJ ; Young, HM (NATURE PORTFOLIO, 2017-11-30)
    Goldberg-Shprintzen syndrome is a poorly understood condition characterized by learning difficulties, facial dysmorphism, microcephaly, and Hirschsprung disease. GOSHS is due to recessive mutations in KIAA1279, which encodes kinesin family member 1 binding protein (KIF1BP, also known as KBP). We examined the effects of inactivation of Kif1bp in mice. Mice lacking Kif1bp died shortly after birth, and exhibited smaller brains, olfactory bulbs and anterior commissures, and defects in the vagal and sympathetic innervation of the gut. Kif1bp was found to interact with Ret to regulate the development of the vagal innervation of the stomach. Although newborn Kif1bp -/- mice had neurons along the entire bowel, the colonization of the gut by neural crest-derived cells was delayed. The data show an essential in vivo role for KIF1BP in axon extension from some neurons, and the reduced size of the olfactory bulb also suggests additional roles for KIF1BP. Our mouse model provides a valuable resource to understand GOSHS.