Anatomy and Neuroscience - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Loss of NEDD4 causes complete XY gonadal sex reversal in mice
    Windley, SP ; Mayere, C ; McGovern, AE ; Harvey, NL ; Nef, S ; Schwarz, Q ; Kumar, S ; Wilhelm, D (SPRINGERNATURE, 2022-01-24)
    Gonadogenesis is the process wherein two morphologically distinct organs, the testis and the ovary, arise from a common precursor. In mammals, maleness is driven by the expression of Sry. SRY subsequently upregulates the related family member Sox9 which is responsible for initiating testis differentiation while repressing factors critical to ovarian development such as FOXL2 and β-catenin. Here, we report a hitherto uncharacterised role for the ubiquitin-protein ligase NEDD4 in this process. XY Nedd4-deficient mice exhibit complete male-to-female gonadal sex reversal shown by the ectopic upregulation of Foxl2 expression at the time of gonadal sex determination as well as insufficient upregulation of Sox9. This sex reversal extends to germ cells with ectopic expression of SYCP3 in XY Nedd4-/- germ cells and significantly higher Sycp3 transcripts in XY and XX Nedd4-deficient mice when compared to both XY and XX controls. Further, Nedd4-/- mice exhibit reduced gonadal precursor cell formation and gonadal size as a result of reduced proliferation within the developing gonad as well as reduced Nr5a1 expression. Together, these results establish an essential role for NEDD4 in XY gonadal sex determination and development and suggest a potential role for NEDD4 in orchestrating these cell fate decisions through the suppression of the female pathway to ensure proper testis differentiation.
  • Item
    No Preview Available
    Signaling Pathways Involved in Mammalian Sex Determination and Gonad Development
    Windley, SP ; Wilhelm, D (KARGER, 2015)
    The development of any organ system requires a complex interplay of cellular signals to initiate the differentiation and development of the heterogeneous cell and tissue types required to carry out the organs' functions. In this way, an extracellular stimulus is transmitted to an intracellular target through an array of interacting protein intermediaries, ultimately enabling the target cell to elicit a response. Surprisingly, only a small number of signaling pathways are implicated throughout embryogenesis and are used over and over again. Gonadogenesis is a unique process in that 2 morphologically distinct organs, the testes and ovaries, arise from a common precursor, the bipotential genital ridge. Accordingly, most of the signaling pathways observed throughout embryogenesis also have been shown to be important for mammalian sex determination and gonad development. Here, we review the mechanisms of signal transduction within these pathways and the importance of these pathways throughout mammalian gonad development, mainly concentrating on data obtained in mouse but including other species where appropriate.