Anatomy and Neuroscience - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 5 of 5
  • Item
    Thumbnail Image
    TRIM28-dependent SUMOylation protects the adult ovary from activation of the testicular pathway
    Rossitto, M ; Dejardin, S ; Rands, CM ; Le Gras, S ; Migale, R ; Rafiee, M-R ; Neirijnck, Y ; Pruvost, A ; Nguyen, AL ; Bossis, G ; Cammas, F ; Le Gallic, L ; Wilhelm, D ; Lovell-Badge, R ; Boizet-Bonhoure, B ; Nef, S ; Poulat, F (NATURE PORTFOLIO, 2022-07-29)
    Gonadal sexual fate in mammals is determined during embryonic development and must be actively maintained in adulthood. In the mouse ovary, oestrogen receptors and FOXL2 protect ovarian granulosa cells from transdifferentiation into Sertoli cells, their testicular counterpart. However, the mechanism underlying their protective effect is unknown. Here, we show that TRIM28 is required to prevent female-to-male sex reversal of the mouse ovary after birth. We found that upon loss of Trim28, ovarian granulosa cells transdifferentiate to Sertoli cells through an intermediate cell type, different from gonadal embryonic progenitors. TRIM28 is recruited on chromatin in the proximity of FOXL2 to maintain the ovarian pathway and to repress testicular-specific genes. The role of TRIM28 in ovarian maintenance depends on its E3-SUMO ligase activity that regulates the sex-specific SUMOylation profile of ovarian-specific genes. Our study identifies TRIM28 as a key factor in protecting the adult ovary from the testicular pathway.
  • Item
    Thumbnail Image
    β-hydroxybutyrate reduces blastocyst viability via trophectoderm-mediated metabolic aberrations in mice
    Whatley, EG ; Truong, TT ; Wilhelm, D ; Harvey, AJ ; Gardner, DK (OXFORD UNIV PRESS, 2022-08-25)
    STUDY QUESTION: What is the effect of the ketone β-hydroxybutyrate (βOHB) on preimplantation mouse embryo development, metabolism, epigenetics and post-transfer viability? SUMMARY ANSWER: In vitro βOHB exposure at ketogenic diet (KD)-relevant serum concentrations significantly impaired preimplantation mouse embryo development, induced aberrant glycolytic metabolism and reduced post-transfer fetal viability in a sex-specific manner. WHAT IS KNOWN ALREADY: A maternal KD in humans elevates gamete and offspring βOHB exposure during conception and gestation, and in rodents is associated with an increased time to pregnancy, and altered offspring organogenesis, post-natal growth and behaviour, suggesting a developmental programming effect. In vitro exposure to βOHB at supraphysiological concentrations (8-80 mM) perturbs preimplantation mouse embryo development. STUDY DESIGN, SIZE, DURATION: A mouse model of embryo development and viability was utilized for this laboratory-based study. Embryo culture media were supplemented with βOHB at KD-relevant concentrations, and the developmental competence, physiology, epigenetic state and post-transfer viability of in vitro cultured βOHB-exposed embryos was assessed. PARTICIPANTS/MATERIALS, SETTING, METHODS: Mouse embryos were cultured in vitro with or without βOHB at concentrations representing serum levels during pregnancy (0.1 mM), standard diet consumption (0.25 mM), KD consumption (2 mM) and diabetic ketoacidosis (4 mM). The impact of βOHB exposure on embryo development (blastocyst formation rate, morphokinetics and blastocyst total, inner cell mass and trophectoderm (TE) cell number), physiology (redox state, βOHB metabolism, glycolytic metabolism), epigenetic state (histone 3 lysine 27 β-hydroxybutyrylation, H3K27bhb) and post-transfer viability (implantation rate, fetal and placental development) was assessed. MAIN RESULTS AND THE ROLE OF CHANCE: All βOHB concentrations tested slowed embryo development (P < 0.05), and βOHB at KD-relevant serum levels (2 mM) delayed morphokinetic development, beginning at syngamy (P < 0.05). Compared with unexposed controls, βOHB exposure reduced blastocyst total and TE cell number (≥0.25 mM; P < 0.05), reduced blastocyst glucose consumption (2 mM; P < 0.01) and increased lactate production (0.25 mM; P < 0.05) and glycolytic flux (0.25 and 2 mM; P < 0.01). Consumption of βOHB by embryos, mediated via monocarboxylate transporters, was detected throughout preimplantation development. Supraphysiological (20 mM; P < 0.001), but not physiological (0.25-4 mM) βOHB elevated H3K27bhb levels. Preimplantation βOHB exposure at serum KD levels (2 mM) reduced post-transfer viability. Implantation and fetal development rates of βOHB-treated embryos were 50% lower than controls (P < 0.05), and resultant fetuses had a shorter crown-rump length (P < 0.01) and placental diameter (P < 0.05). A strong sex-specific effect of βOHB was detected, whereby female fetuses from βOHB-treated embryos weighed less (P < 0.05), had a shorter crown-rump length (P < 0.05), and tended to have accelerated ear development (P < 0.08) compared with female control fetuses. LIMITATIONS, REASONS FOR CAUTION: This study only assessed embryo development, physiology and viability in a mouse model utilizing in vitro βOHB exposure; the impact of in vivo exposure was not assessed. The concentrations of βOHB utilized were modelled on blood/serum levels as the true oviduct and uterine concentrations are currently unknown. WIDER IMPLICATIONS OF THE FINDINGS: These findings indicate that the development, physiology and viability of mouse embryos is detrimentally impacted by preimplantation exposure to βOHB within a physiological range. Maternal diets which increase βOHB levels, such as a KD, may affect preimplantation embryo development and may therefore impair subsequent viability and long-term health. Consequently, our initial observations warrant follow-up studies in larger human populations. Furthermore, analysis of βOHB concentrations within human and rodent oviduct and uterine fluid under different nutritional states is also required. STUDY FUNDING/COMPETING INTEREST(S): This work was funded by the University of Melbourne and the Norma Hilda Schuster (nee Swift) Scholarship. The authors have no conflicts of interest. TRIAL REGISTRATION NUMBER: N/A.
  • Item
    Thumbnail Image
    Loss of NEDD4 causes complete XY gonadal sex reversal in mice
    Windley, SP ; Mayere, C ; McGovern, AE ; Harvey, NL ; Nef, S ; Schwarz, Q ; Kumar, S ; Wilhelm, D (SPRINGERNATURE, 2022-01-24)
    Gonadogenesis is the process wherein two morphologically distinct organs, the testis and the ovary, arise from a common precursor. In mammals, maleness is driven by the expression of Sry. SRY subsequently upregulates the related family member Sox9 which is responsible for initiating testis differentiation while repressing factors critical to ovarian development such as FOXL2 and β-catenin. Here, we report a hitherto uncharacterised role for the ubiquitin-protein ligase NEDD4 in this process. XY Nedd4-deficient mice exhibit complete male-to-female gonadal sex reversal shown by the ectopic upregulation of Foxl2 expression at the time of gonadal sex determination as well as insufficient upregulation of Sox9. This sex reversal extends to germ cells with ectopic expression of SYCP3 in XY Nedd4-/- germ cells and significantly higher Sycp3 transcripts in XY and XX Nedd4-deficient mice when compared to both XY and XX controls. Further, Nedd4-/- mice exhibit reduced gonadal precursor cell formation and gonadal size as a result of reduced proliferation within the developing gonad as well as reduced Nr5a1 expression. Together, these results establish an essential role for NEDD4 in XY gonadal sex determination and development and suggest a potential role for NEDD4 in orchestrating these cell fate decisions through the suppression of the female pathway to ensure proper testis differentiation.
  • Item
    Thumbnail Image
    Heterozygous deletion of Sox9 in mouse mimics the gonadal sex reversal phenotype associated with campomelic dysplasia in humans
    Bagheri-Fam, S ; Combes, AN ; Ling, CK ; Wilhelm, D (OXFORD UNIV PRESS, 2020-12-01)
    Heterozygous mutations in the human SOX9 gene cause the skeletal malformation syndrome campomelic dysplasia which in 75% of 46, XY individuals is associated with male-to-female sex reversal. Although studies in homozygous Sox9 knockout mouse models confirmed that SOX9 is critical for testis development, mice heterozygous for the Sox9-null allele were reported to develop normal testes. This led to the belief that the SOX9 dosage requirement for testis differentiation is different between humans, which often require both alleles, and mice, in which one allele is sufficient. However, in prior studies, gonadal phenotypes in heterozygous Sox9 XY mice were assessed only by either gross morphology, histological staining or analyzed on a mixed genetic background. In this study, we conditionally inactivated Sox9 in somatic cells of developing gonads using the Nr5a1-Cre mouse line on a pure C57BL/6 genetic background. Section and whole-mount immunofluorescence for testicular and ovarian markers showed that XY Sox9 heterozygous gonads developed as ovotestes. Quantitative droplet digital PCR confirmed a 50% reduction of Sox9 mRNA as well as partial sex reversal shown by an upregulation of ovarian genes. Our data show that haploinsufficiency of Sox9 can perturb testis development in mice, suggesting that mice may provide a more accurate model of human disorders/differences of sex development than previously thought.
  • Item
    Thumbnail Image
    The gene encoding the ketogenic enzyme HMGCS2 displays a unique expression during gonad development in mice.
    Bagheri-Fam, S ; Chen, H ; Wilson, S ; Ayers, K ; Hughes, J ; Sloan-Bena, F ; Calvel, P ; Robevska, G ; Puisac, B ; Kusz-Zamelczyk, K ; Gimelli, S ; Spik, A ; Jaruzelska, J ; Warenik-Szymankiewicz, A ; Faradz, S ; Nef, S ; Pié, J ; Thomas, P ; Sinclair, A ; Wilhelm, D ; Yenugu, S (Public Library Science, 2020)
    Disorders/differences of sex development (DSD) cause profound psychological and reproductive consequences for the affected individuals, however, most are still unexplained at the molecular level. Here, we present a novel gene, 3-hydroxy-3-methylglutaryl coenzyme A synthase 2 (HMGCS2), encoding a metabolic enzyme in the liver important for energy production from fatty acids, that shows an unusual expression pattern in developing fetal mouse gonads. Shortly after gonadal sex determination it is up-regulated in the developing testes following a very similar spatial and temporal pattern as the male-determining gene Sry in Sertoli cells before switching to ovarian enriched expression. To test if Hmgcs2 is important for gonad development in mammals, we pursued two lines of investigations. Firstly, we generated Hmgcs2-null mice using CRISPR/Cas9 and found that these mice had gonads that developed normally even on a sensitized background. Secondly, we screened 46,XY DSD patients with gonadal dysgenesis and identified two unrelated patients with a deletion and a deleterious missense variant in HMGCS2 respectively. However, both variants were heterozygous, suggesting that HMGCS2 might not be the causative gene. Analysis of a larger number of patients in the future might shed more light into the possible association of HMGCS2 with human gonadal development.