Anatomy and Neuroscience - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    EphA4 (Sek1) receptor tyrosine kinase is required for the development of the corticospinal tract
    Dottori, M ; Hartley, L ; Galea, M ; Paxinos, G ; Polizzotto, M ; Kilpatrick, T ; Bartlett, PF ; Murphy, M ; Köntgen, F ; Boyd, AW (NATL ACAD SCIENCES, 1998-10-27)
    Members of the Eph family of tyrosine kinase receptors have been implicated in the regulation of developmental processes and, in particular, axon guidance in the developing nervous system. The function of the EphA4 (Sek1) receptor was explored through creation of a null mutant mouse. Mice with a null mutation in the EphA4 gene are viable and fertile but have a gross motor dysfunction, which is evidenced by a loss of coordination of limb movement and a resultant hopping, kangaroo-like gait. Consistent with the observed phenotype, anatomical studies and anterograde tracing experiments reveal major disruptions of the corticospinal tract within the medulla and spinal cord in the null mutant animals. These results demonstrate a critical role for EphA4 in establishing the corticospinal projection.
  • Item
    Thumbnail Image
    Characterization of the model for experimental testicular teratoma in 129/SvJ-mice
    Sundström, J ; Pelliniemi, LJ ; Kuopio, T ; Veräjänkorva, E ; Fröjdman, K ; Harley, V ; Salminen, E ; Pöllänen, P (NATURE PUBLISHING GROUP, 1999-04)
    An animal model of experimental testicular teratoma has been established to study how a teratoma affects the host testis and how the host testis reacts against the teratoma. 129/SvJ-mice were used as experimental animals. To induce the experimental testicular teratoma, male gonadal ridges from 12-day-old 129/SvJ-mouse fetuses were grafted into the testes of adult mice for 1-12 weeks. The developing tumour was analysed by light and electron microscopy and by immunocytochemical localization of transcription factors SOX9 and c-kit, glial fibrillary acidic protein (GFAP) and type IV collagen. Testicular teratoma was observed in 36 out of 124 testes with implanted fetal gonadal ridges (frequency 29%). One spontaneous testicular teratoma was observed in this material from 70 male mice (1.5%). One week after implantation intracordal clusters of cells were seen in embryonic testicular cords of the graft as the first sign of testicular teratomas. Four weeks after implantation the embryonic testicular cords had totally disappeared from grafts with teratomas, and the tumour tissue had enlarged the testis and invaded the interstitium of the host testis. It consisted of solitary pieces of immature cartilage as well as of glial cells and of primitive neuroepithelium. Six to eight weeks after implantation the tumour tissue had expanded so that the enlarged testis could be detected by macroscopic enlargement of the scrotum. The testicular tissue of the host had practically disappeared, and only solitary disrupted seminiferous tubules of the host were seen surrounding the teratoma. Neuroepithelial structures of some teratomas cultured for 8 weeks had cells with a granular nucleus as a sign of obvious apoptosis. Eleven to 12 weeks after implantation the growth of the teratoma had stopped, and the histology corresponded to that of a mature cystic teratoma. GFAP, SOX9 and type IV collagen were strongly positive in some parts of the tumours cultured for 4 and 8 weeks, while only occasional c-kit-positive areas were observed in tumours cultured for 8 weeks. As conclusions: (1) the metastasizing capacity of the experimental testicular teratoma is very low during 12 weeks, but the behaviour of the tumour in the testicular tissue of the graft is invasive; (2) the growth of experimental testicular teratomas cease 6-8 weeks after implantation of the fetal gonadal ridges with the obvious apoptosis of the immature tissue components; (3) the model of experimental testicular teratoma in the mouse is suitable for studying how the teratoma affects the host testis and how the host testis reacts to teratoma.