Anatomy and Neuroscience - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 7 of 7
  • Item
    Thumbnail Image
    Kif1bp loss in mice leads to defects in the peripheral and central nervous system and perinatal death (vol 6, 2017)
    Hirst, CS ; Stamp, LA ; Bergner, AJ ; Hao, MM ; Tran, MX ; Morgan, JM ; Dutschmann, M ; Allen, AM ; Paxinos, G ; Furlong, TM ; McKeown, SJ ; Young, HM (NATURE PUBLISHING GROUP, 2018-06-08)
    A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.
  • Item
    Thumbnail Image
    Exposure to GDNF Enhances the Ability of Enteric Neural Progenitors to Generate an Enteric Nervous System
    McKeown, SJ ; Mohsenipour, M ; Bergner, AJ ; Young, HM ; Stamp, LA (CELL PRESS, 2017-02-14)
    Cell therapy is a promising approach to generate an enteric nervous system (ENS) and treat enteric neuropathies. However, for translation to the clinic, it is highly likely that enteric neural progenitors will require manipulation prior to transplantation to enhance their ability to migrate and generate an ENS. In this study, we examine the effects of exposure to several factors on the ability of ENS progenitors, grown as enteric neurospheres, to migrate and generate an ENS. Exposure to glial-cell-line-derived neurotrophic factor (GDNF) resulted in a 14-fold increase in neurosphere volume and a 12-fold increase in cell number. Following co-culture with embryonic gut or transplantation into the colon of postnatal mice in vivo, cells derived from GDNF-treated neurospheres showed a 2-fold increase in the distance migrated compared with controls. Our data show that the ability of enteric neurospheres to generate an ENS can be enhanced by exposure to appropriate factors.
  • Item
    Thumbnail Image
    Kif1bp loss in mice leads to defects in the peripheral and central nervous system and perinatal death
    Hirst, CS ; Stamp, LA ; Bergner, AJ ; Hao, MM ; Tran, MX ; Morgan, JM ; Dutschmann, M ; Allen, AM ; Paxinos, G ; Furlong, TM ; McKeown, SJ ; Young, HM (NATURE PORTFOLIO, 2017-11-30)
    Goldberg-Shprintzen syndrome is a poorly understood condition characterized by learning difficulties, facial dysmorphism, microcephaly, and Hirschsprung disease. GOSHS is due to recessive mutations in KIAA1279, which encodes kinesin family member 1 binding protein (KIF1BP, also known as KBP). We examined the effects of inactivation of Kif1bp in mice. Mice lacking Kif1bp died shortly after birth, and exhibited smaller brains, olfactory bulbs and anterior commissures, and defects in the vagal and sympathetic innervation of the gut. Kif1bp was found to interact with Ret to regulate the development of the vagal innervation of the stomach. Although newborn Kif1bp -/- mice had neurons along the entire bowel, the colonization of the gut by neural crest-derived cells was delayed. The data show an essential in vivo role for KIF1BP in axon extension from some neurons, and the reduced size of the olfactory bulb also suggests additional roles for KIF1BP. Our mouse model provides a valuable resource to understand GOSHS.
  • Item
    No Preview Available
    Enteric neural progenitors are more efficient than brain-derived progenitors at generating neurons in the colon
    Findlay, Q ; Yap, KK ; Bergner, AJ ; Young, HM ; Stamp, LA (AMER PHYSIOLOGICAL SOC, 2014-10-01)
    Gut motility disorders can result from an absent, damaged, or dysfunctional enteric nervous system (ENS). Cell therapy is an exciting prospect to treat these enteric neuropathies and restore gut motility. Previous studies have examined a variety of sources of stem/progenitor cells, but the ability of different sources of cells to generate enteric neurons has not been directly compared. It is important to identify the source of stem/progenitor cells that is best at colonizing the bowel and generating neurons following transplantation. The aim of this study was to compare the ability of central nervous system (CNS) progenitors and ENS progenitors to colonize the colon and differentiate into neurons. Genetically labeled CNS- and ENS-derived progenitors were cocultured with aneural explants of embryonic mouse colon for 1 or 2.5 wk to assess their migratory, proliferative, and differentiation capacities, and survival, in the embryonic gut environment. Both progenitor cell populations were transplanted in the postnatal colon of mice in vivo for 4 wk before they were analyzed for migration and differentiation using immunohistochemistry. ENS-derived progenitors migrated further than CNS-derived cells in both embryonic and postnatal gut environments. ENS-derived progenitors also gave rise to more neurons than their CNS-derived counterparts. Furthermore, neurons derived from ENS progenitors clustered together in ganglia, whereas CNS-derived neurons were mostly solitary. We conclude that, within the gut environment, ENS-derived progenitors show superior migration, proliferation, and neuronal differentiation compared with CNS progenitors.
  • Item
    No Preview Available
    Transplanted progenitors generate functional enteric neurons in the postnatal colon
    Hotta, R ; Stamp, LA ; Foong, JPP ; McConnell, SN ; Bergner, AJ ; Anderson, RB ; Enomoto, H ; Newgreen, DF ; Obermayr, F ; Furness, JB ; Young, HM (AMER SOC CLINICAL INVESTIGATION INC, 2013-03)
    Cell therapy has the potential to treat gastrointestinal motility disorders caused by diseases of the enteric nervous system. Many studies have demonstrated that various stem/progenitor cells can give rise to functional neurons in the embryonic gut; however, it is not yet known whether transplanted neural progenitor cells can migrate, proliferate, and generate functional neurons in the postnatal bowel in vivo. We transplanted neurospheres generated from fetal and postnatal intestinal neural crest-derived cells into the colon of postnatal mice. The neurosphere-derived cells migrated, proliferated, and generated neurons and glial cells that formed ganglion-like clusters within the recipient colon. Graft-derived neurons exhibited morphological, neurochemical, and electrophysiological characteristics similar to those of enteric neurons; they received synaptic inputs; and their neurites projected to muscle layers and the enteric ganglia of the recipient mice. These findings show that transplanted enteric neural progenitor cells can generate functional enteric neurons in the postnatal bowel and advances the notion that cell therapy is a promising strategy for enteric neuropathies.
  • Item
    Thumbnail Image
    Birthdating of Myenteric Neuron Subtypes in the Small Intestine of the Mouse
    Bergner, AJ ; Stamp, LA ; Gonsalvez, DG ; Allison, MB ; Olson, DP ; Myers, MG ; Anderson, CR ; Young, HM (WILEY, 2014-02-15)
    There are many different types of enteric neurons. Previous studies have identified the time at which some enteric neuron subtypes are born (exit the cell cycle) in the mouse, but the birthdates of some major enteric neuron subtypes are still incompletely characterized or unknown. We combined 5-ethynynl-2'-deoxyuridine (EdU) labeling with antibody markers that identify myenteric neuron subtypes to determine when neuron subtypes are born in the mouse small intestine. We found that different neurochemical classes of enteric neuron differed in their birthdates; serotonin neurons were born first with peak cell cycle exit at E11.5, followed by neurofilament-M neurons, calcitonin gene-related peptide neurons (peak cell cycle exit for both at embryonic day [E]12.5-E13.5), tyrosine hydroxylase neurons (E15.5), nitric oxide synthase 1 (NOS1) neurons (E15.5), and calretinin neurons (postnatal day [P]0). The vast majority of myenteric neurons had exited the cell cycle by P10. We did not observe any EdU+/NOS1+ myenteric neurons in the small intestine of adult mice following EdU injection at E10.5 or E11.5, which was unexpected, as previous studies have shown that NOS1 neurons are present in E11.5 mice. Studies using the proliferation marker Ki67 revealed that very few NOS1 neurons in the E11.5 and E12.5 gut were proliferating. However, Cre-lox-based genetic fate-mapping revealed a small subpopulation of myenteric neurons that appears to express NOS1 only transiently. Together, our results confirm a relationship between enteric neuron subtype and birthdate, and suggest that some enteric neurons exhibit neurochemical phenotypes during development that are different from their mature phenotype.
  • Item
    Thumbnail Image
    Colonizing while migrating: how do individual enteric neural crest cells behave?
    Young, HM ; Bergner, AJ ; Simpson, MJ ; McKeown, SJ ; Hao, MM ; Anderson, CR ; Enomoto, H (BMC, 2014-03-26)
    BACKGROUND: Directed cell migration is essential for normal development. In most of the migratory cell populations that have been analyzed in detail to date, all of the cells migrate as a collective from one location to another. However, there are also migratory cell populations that must populate the areas through which they migrate, and thus some cells get left behind while others advance. Very little is known about how individual cells behave to achieve concomitant directional migration and population of the migratory route. We examined the behavior of enteric neural crest-derived cells (ENCCs), which must both advance caudally to reach the anal end and populate each gut region. RESULTS: The behavior of individual ENCCs was examined using live imaging and mice in which ENCCs express a photoconvertible protein. We show that individual ENCCs exhibit very variable directionalities and speed; as the migratory wavefront of ENCCs advances caudally, each gut region is populated primarily by some ENCCs migrating non-directionally. After populating each region, ENCCs remain migratory for at least 24 hours. Endothelin receptor type B (EDNRB) signaling is known to be essential for the normal advance of the ENCC population. We now show that perturbation of EDNRB principally affects individual ENCC speed rather than directionality. The trajectories of solitary ENCCs, which occur transiently at the wavefront, were consistent with an unbiased random walk and so cell-cell contact is essential for directional migration. ENCCs migrate in close association with neurites. We showed that although ENCCs often use neurites as substrates, ENCCs lead the way, neurites are not required for chain formation and neurite growth is more directional than the migration of ENCCs as a whole. CONCLUSIONS: Each gut region is initially populated by sub-populations of ENCCs migrating non-directionally, rather than stopping. This might provide a mechanism for ensuring a uniform density of ENCCs along the growing gut.