Anatomy and Neuroscience - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 16
  • Item
    Thumbnail Image
    Exploring Hospital Inpatients' Awareness of Their Falls Risk: A Qualitative Exploratory Study.
    Dabkowski, E ; Cooper, SJ ; Duncan, JR ; Missen, K (MDPI AG, 2022-12-27)
    Patient falls in hospital may lead to physical, psychological, social and financial impacts. Understanding patients' perceptions of their fall risk will help to direct fall prevention strategies and understand patient behaviours. The aim of this study was to explore the perceptions and experiences that influence a patient's understanding of their fall risk in regional Australian hospitals. Semi-structured, individual interviews were conducted in wards across three Australian hospitals. Participants were aged 40 years and over, able to communicate in English and were mobile prior to hospital admission. Participants were excluded from the study if they returned a Standardised Mini-Mental State Examination (SMMSE) score of less than 18 when assessed by the researcher. A total of 18 participants with an average age of 69.8 years (SD ± 12.7, range 41 to 84 years) from three regional Victorian hospitals were interviewed for this study. Data were analysed using a reflexive thematic analysis identifying three major themes; (1) Environment (extrinsic) (2) Individual (intrinsic), and (3) Outcomes, as well as eight minor themes. Participants recognised the hazardous nature of a hospital and their personal responsibilities in staying safe. Falls education needs to be consistently delivered, with the focus on empowering the patient to help them adjust to changes in their clinical condition, whether temporary or permanent.
  • Item
    Thumbnail Image
    Adult Inpatients' Perceptions of Their Fall Risk: A Scoping Review.
    Dabkowski, E ; Cooper, S ; Duncan, JR ; Missen, K (MDPI AG, 2022-05-27)
    Patient falls in hospitals continue to be a global concern due to the poor health outcomes and costs that can occur. A large number of falls in hospitals are unwitnessed and mostly occur due to patient behaviours and not seeking assistance. Understanding these patient behaviours may help to direct fall prevention strategies, with evidence suggesting the need to integrate patients' perspectives into fall management. The aim of this scoping review was to explore the extent of the literature about patients' perceptions and experiences of their fall risk in hospital and/or of falling in hospital. This review was conducted using a five-stage methodological framework recommended by Arksey and O'Malley. A total of nine databases were searched using key search terms such as "fall*", "perception" and "hospital." International peer-reviewed and grey literature were searched between the years 2011 and 2021. A total of 41 articles, ranging in study design, met the inclusion criteria. After reporting on the article demographics and fall perception constructs and measures, the qualitative and quantitative findings were organised into five domains: Fall Risk Perception Measures, Patients' Perceptions of Fall Risk, Patients' Perceptions of Falling in Hospital, Patients' Fear of Falling and Barriers to Fall Prevention in Hospital. Approximately two-thirds of study participants did not accurately identify their fall risk compared to that defined by a health professional. This demonstrates the importance of partnering with patients and obtaining their insights on their perceived fall risk, as this may help to inform fall management and care. This review identified further areas for research that may help to inform fall prevention in a hospital setting, including the need for further research into fall risk perception measures.
  • Item
    Thumbnail Image
    Medullary Serotonergic Binding Deficits and Hippocampal Abnormalities in Sudden Infant Death Syndrome: One or Two Entities?
    Haynes, RL ; Kinney, HC ; Haas, EA ; Duncan, JR ; Riehs, M ; Trachtenberg, F ; Armstrong, DD ; Alexandrescu, S ; Cryan, JB ; Hefti, MM ; Krous, HF ; Goldstein, RD ; Sleeper, LA (Frontiers Media SA, 2021)
    Sudden infant death syndrome (SIDS) is understood as a syndrome that presents with the common phenotype of sudden death but involves heterogenous biological causes. Many pathological findings have been consistently reported in SIDS, notably in areas of the brain known to play a role in autonomic control and arousal. Our laboratory has reported abnormalities in SIDS cases in medullary serotonin (5-HT) receptor 1A and within the dentate gyrus of the hippocampus. Unknown, however, is whether the medullary and hippocampal abnormalities coexist in the same SIDS cases, supporting a biological relationship of one abnormality with the other. In this study, we begin with an analysis of medullary 5-HT1A binding, as determined by receptor ligand autoradiography, in a combined cohort of published and unpublished SIDS (n = 86) and control (n = 22) cases. We report 5-HT1A binding abnormalities consistent with previously reported data, including lower age-adjusted mean binding in SIDS and age vs. diagnosis interactions. Utilizing this combined cohort of cases, we identified 41 SIDS cases with overlapping medullary 5-HT1A binding data and hippocampal assessment and statistically addressed the relationship between abnormalities at each site. Within this SIDS analytic cohort, we defined abnormal (low) medullary 5-HT1A binding as within the lowest quartile of binding adjusted for age and we examined three specific hippocampal findings previously identified as significantly more prevalent in SIDS compared to controls (granular cell bilamination, clusters of immature cells in the subgranular layer, and single ectopic cells in the molecular layer of the dentate gyrus). Our data did not find a strong statistical relationship between low medullary 5-HT1A binding and the presence of any of the hippocampal abnormalities examined. It did, however, identify a subset of SIDS (~25%) with both low medullary 5-HT1A binding and hippocampal abnormalities. The subset of SIDS cases with both low medullary 5-HT1A binding and single ectopic cells in the molecular layer was associated with prenatal smoking (p = 0.02), suggesting a role for the exposure in development of the two abnormalities. Overall, our data present novel information on the relationship between neuropathogical abnormalities in SIDS and support the heterogenous nature and overall complexity of SIDS pathogenesis.
  • Item
    Thumbnail Image
    Nicotinic Receptors in the Brainstem Ascending Arousal System in SIDS With Analysis of Pre-natal Exposures to Maternal Smoking and Alcohol in High-Risk Populations of the Safe Passage Study.
    Vivekanandarajah, A ; Nelson, ME ; Kinney, HC ; Elliott, AJ ; Folkerth, RD ; Tran, H ; Cotton, J ; Jacobs, P ; Minter, M ; McMillan, K ; Duncan, JR ; Broadbelt, KG ; Schissler, K ; Odendaal, HJ ; Angal, J ; Brink, L ; Burger, EH ; Coldrey, JA ; Dempers, J ; Boyd, TK ; Fifer, WP ; Geldenhuys, E ; Groenewald, C ; Holm, IA ; Myers, MM ; Randall, B ; Schubert, P ; Sens, MA ; Wright, CA ; Roberts, DJ ; Nelsen, L ; Wadee, S ; Zaharie, D ; Haynes, RL ; PASS Network, (Frontiers Media SA, 2021)
    Pre-natal exposures to nicotine and alcohol are known risk factors for sudden infant death syndrome (SIDS), the leading cause of post-neonatal infant mortality. Here, we present data on nicotinic receptor binding, as determined by 125I-epibatidine receptor autoradiography, in the brainstems of infants dying of SIDS and of other known causes of death collected from the Safe Passage Study, a prospective, multicenter study with clinical sites in Cape Town, South Africa and 5 United States sites, including 2 American Indian Reservations. We examined 15 pons and medulla regions related to cardiovascular control and arousal in infants dying of SIDS (n = 12) and infants dying from known causes (n = 20, 10 pre-discharge from time of birth, 10 post-discharge). Overall, there was a developmental decrease in 125I-epibatidine binding with increasing postconceptional age in 5 medullary sites [raphe obscurus, gigantocellularis, paragigantocellularis, centralis, and dorsal accessory olive (p = 0.0002-0.03)], three of which are nuclei containing serotonin cells. Comparing SIDS with post-discharge known cause of death (post-KCOD) controls, we found significant decreased binding in SIDS in the nucleus pontis oralis (p = 0.02), a critical component of the cholinergic ascending arousal system of the rostral pons (post-KCOD, 12.1 ± 0.9 fmol/mg and SIDS, 9.1 ± 0.78 fmol/mg). In addition, we found an effect of maternal smoking in SIDS (n = 11) combined with post-KCOD controls (n = 8) on the raphe obscurus (p = 0.01), gigantocellularis (p = 0.02), and the paragigantocellularis (p = 0.002), three medullary sites found in this study to have decreased binding with age and found in previous studies to have abnormal indices of serotonin neurotransmission in SIDS infants. At these sites, 125I-epibatidine binding increased with increasing cigarettes per week. We found no effect of maternal drinking on 125I-epibatidine binding at any site measured. Taken together, these data support changes in nicotinic receptor binding related to development, cause of death, and exposure to maternal cigarette smoking. These data present new evidence in a prospective study supporting the roles of developmental factors, as well as adverse exposure on nicotinic receptors, in serotonergic nuclei of the rostral medulla-a finding that highlights the interwoven and complex relationship between acetylcholine (via nicotinic receptors) and serotonergic neurotransmission in the medulla.
  • Item
    Thumbnail Image
    Toluene inhalation in adolescent rats reduces flexible behaviour in adulthood and alters glutamatergic and GABAergic signalling
    Furlong, TM ; Duncan, JR ; Corbit, LH ; Rae, CD ; Rowlands, BD ; Maher, AD ; Nasrallah, FA ; Milligan, CJ ; Petrou, S ; Lawrence, AJ ; Balleine, BW (WILEY-BLACKWELL, 2016-12)
    Toluene is a commonly abused inhalant that is easily accessible to adolescents. Despite the increasing incidence of use, our understanding of its long-term impact remains limited. Here, we used a range of techniques to examine the acute and chronic effects of toluene exposure on glutameteric and GABAergic function, and on indices of psychological function in adult rats after adolescent exposure. Metabolomics conducted on cortical tissue established that acute exposure to toluene produces alterations in cellular metabolism indicative of a glutamatergic and GABAergic profile. Similarly, in vitro electrophysiology in Xenopus oocytes found that acute toluene exposure reduced NMDA receptor signalling. Finally, in an adolescent rodent model of chronic intermittent exposure to toluene (10 000 ppm), we found that, while toluene exposure did not affect initial learning, it induced a deficit in updating that learning when response-outcome relationships were reversed or degraded in an instrumental conditioning paradigm. There were also group differences when more effort was required to obtain the reward; toluene-exposed animals were less sensitive to progressive ratio schedules and to delayed discounting. These behavioural deficits were accompanied by changes in subunit expression of both NMDA and GABA receptors in adulthood, up to 10 weeks after the final exposure to toluene in the hippocampus, prefrontal cortex and ventromedial striatum; regions with recognized roles in behavioural flexibility and decision-making. Collectively, our data suggest that exposure to toluene is sufficient to induce adaptive changes in glutamatergic and GABAergic systems and in adaptive behaviour that may underlie the deficits observed following adolescent inhalant abuse, including susceptibility to further drug-use.
  • Item
    Thumbnail Image
    Current perspectives on the neurobiology of drug addiction: a focus on genetics and factors regulating gene expression.
    Duncan, JR (Hindawi Limited, 2012)
    Drug addiction is a chronic, relapsing disorder defined by cyclic patterns of compulsive drug seeking and taking interspersed with episodes of abstinence. While genetic variability may increase the risk of addictive behaviours in an individual, exposure to a drug results in neuroadaptations in interconnected brain circuits which, in susceptible individuals, are believed to underlie the transition to, and maintenance of, an addicted state. These adaptations can occur at the cellular, molecular, or (epi)genetic level and are associated with synaptic plasticity and altered gene expression, the latter being mediated via both factors affecting translation (epigenetics) and transcription (non coding microRNAs) of the DNA or RNA itself. New advances using techniques such as optogenetics have the potential to increase our understanding of the microcircuitry mediating addictive behaviours. However, the processes leading to addiction are complex and multifactorial and thus we face a major contemporary challenge to elucidate the factors implicated in the development and maintenance of an addicted state.
  • Item
    Thumbnail Image
    Abnormalities in substance P neurokinin-1 receptor binding in key brainstem nuclei in sudden infant death syndrome related to prematurity and sex
    Bright, FM ; Vink, R ; Byard, RW ; Duncan, JR ; Krous, HF ; Paterson, DS ; Song, C (PUBLIC LIBRARY SCIENCE, 2017-09-20)
    Sudden infant death syndrome (SIDS) involves failure of arousal to potentially life threatening events, including hypoxia, during sleep. While neuronal dysfunction and abnormalities in neurotransmitter systems within the medulla oblongata have been implicated, the specific pathways associated with autonomic and cardiorespiratory failure are unknown. The neuropeptide substance P (SP) and its tachykinin neurokinin-1 receptor (NK1R) have been shown to play an integral role in the modulation of homeostatic function in the medulla, including regulation of respiratory rhythm generation, integration of cardiovascular control, and modulation of the baroreceptor reflex and mediation of the chemoreceptor reflex in response to hypoxia. Abnormalities in SP neurotransmission may therefore result in autonomic dysfunction during sleep and contribute to SIDS deaths. [125I] Bolton Hunter SP autoradiography was used to map the distribution and density of the SP, NK1R to 13 specific nuclei intimately related to cardiorespiratory function and autonomic control in the human infant medulla of 55 SIDS and 21 control (non-SIDS) infants. Compared to controls, SIDS cases exhibited a differential, abnormal developmental profile of the SP/NK1R system in the medulla. Furthermore the study revealed significantly decreased NK1R binding within key medullary nuclei in SIDS cases, principally in the nucleus tractus solitarii (NTS) and all three subdivisions of the inferior portion of the olivo-cerebellar complex; the principal inferior olivary complex (PIO), medial accessory olive (MAO) and dorsal accessory olive (DAO). Altered NK1R binding was significantly influenced by prematurity and male sex, which may explain the increased risk of SIDS in premature and male infants. Abnormal NK1R binding in these medullary nuclei may contribute to the defective interaction of critical medullary mechanisms with cerebellar sites, resulting in an inability of a SIDS infant to illicit appropriate respiratory and motor responses to life threatening challenges during sleep. These observations support the concept that abnormalities in a multi-neurotransmitter network within key nuclei of the medullary homeostatic system may underlie the pathogenesis of a subset of SIDS cases.
  • Item
    Thumbnail Image
    The effect of adolescent inhalant abuse on energy balance and growth
    Crossin, R ; Qama, A ; Andrews, ZB ; Lawrence, AJ ; Duncan, JR (JOHN WILEY & SONS LTD, 2019-08)
    The abuse of volatile solvents such as toluene is a significant public health concern, predominantly affecting adolescents. To date, inhalant abuse research has primarily focused on the central nervous system; however, inhalants also exert effects on other organ systems and processes, including metabolic function and energy balance. Adolescent inhalant abuse is characterized by a negative energy balance phenotype, with the peak period of abuse overlapping with the adolescent growth spurt. There are multiple components within the central and peripheral regulation of energy balance that may be affected by adolescent inhalant abuse, such as impaired metabolic signaling, decreased food intake, altered dietary preferences, disrupted glucose tolerance and insulin release, reduced adiposity and skeletal density, and adrenal hypertrophy. These effects may persist into abstinence and adulthood, and the long-term consequences of inhalant-induced metabolic dysfunction are currently unknown. The signs and symptoms resulting from chronic adolescent inhalant abuse may result in a propensity for the development of adult-onset metabolic disorders such as type 2 diabetes, however, further research investigating the long-term effects of inhalant abuse upon energy balance and metabolism are needed. This review addresses several aspects of the short- and long-term effects of inhalant abuse relating to energy and metabolic processes, including energy balance, intake and expenditure; dietary preferences and glycemic control; and the dysfunction of metabolic homeostasis through altered adipose tissue, bone, and hypothalamic-pituitary-adrenal axis function.
  • Item
    Thumbnail Image
    Exploring the Modulation of Hypoxia-Inducible Factor (HIF)-1α by Volatile Anesthetics as a Possible Mechanism Underlying Volatile Anesthetic-Induced CNS Injury
    Giles, EK ; Lawrence, AJ ; Duncan, JR (SPRINGER/PLENUM PUBLISHERS, 2014-09)
    This review summarizes recent research on the potential cognitive and behavioural abnormalities induced by exposure to volatile anesthetics and suggests a role of hypoxia-inducible factor (HIF)-1α in mediating these events. Volatile anesthetics are widely utilized in clinical and research settings, yet the long-term safety of exposure to these agents is under debate. Findings from various animal models suggest volatile anesthetics induce widespread apoptosis in the central nervous system (CNS) that correlates with lasting deficits in learning and memory. Longitudinal analysis of clinical data highlight an increased risk of developmental disorders later in life when children are exposed to volatile anesthetics, particularly when exposures occur over multiple sessions. However, the mechanisms underlying these events have yet to be established. Considering the extensive use of volatile anesthetics, it is crucial that these events are better understood. The possible role of HIF-1α in volatile anesthetic-induced CNS abnormalities will be suggested and areas requiring urgent attention will be outlined.
  • Item
    No Preview Available
    Adolescent inhalant abuse leads to other drug use and impaired growth; implications for diagnosis
    Crossin, R ; Cairney, S ; Lawrence, AJ ; Duncan, JR (WILEY, 2017-02)
    OBJECTIVE: Abuse of inhalants containing the volatile solvent toluene is a significant public health issue, especially for adolescent and Indigenous communities. Adolescent inhalant abuse can lead to chronic health issues and may initiate a trajectory towards further drug use. Identification of at-risk individuals is difficult and diagnostic tools are limited primarily to measurement of serum toluene. Our objective was to identify the effects of adolescent inhalant abuse on subsequent drug use and growth parameters, and to test the predictive power of growth parameters as a diagnostic measure for inhalant abuse. METHODS: We retrospectively analysed drug use and growth data from 118 Indigenous males; 86 chronically sniffed petrol as adolescents. RESULTS: Petrol sniffing was the earliest drug used (mean 13 years) and increased the likelihood and earlier use of other drugs. Petrol sniffing significantly impaired height and weight and was associated with meeting 'failure to thrive' criteria; growth diagnostically out-performed serum toluene. CONCLUSIONS: Adolescent inhalant abuse increases the risk for subsequent and earlier drug use. It also impairs growth such that individuals meet 'failure to thrive' criteria, representing an improved diagnostic model for inhalant abuse. Implications for Public Health: Improved diagnosis of adolescent inhalant abuse may lead to earlier detection and enhanced health outcomes.