Anatomy and Neuroscience - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    Kif1bp loss in mice leads to defects in the peripheral and central nervous system and perinatal death (vol 6, 2017)
    Hirst, CS ; Stamp, LA ; Bergner, AJ ; Hao, MM ; Tran, MX ; Morgan, JM ; Dutschmann, M ; Allen, AM ; Paxinos, G ; Furlong, TM ; McKeown, SJ ; Young, HM (NATURE PORTFOLIO, 2018-06-08)
    A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.
  • Item
    Thumbnail Image
    Exposure to GDNF Enhances the Ability of Enteric Neural Progenitors to Generate an Enteric Nervous System
    McKeown, SJ ; Mohsenipour, M ; Bergner, AJ ; Young, HM ; Stamp, LA (CELL PRESS, 2017-02-14)
    Cell therapy is a promising approach to generate an enteric nervous system (ENS) and treat enteric neuropathies. However, for translation to the clinic, it is highly likely that enteric neural progenitors will require manipulation prior to transplantation to enhance their ability to migrate and generate an ENS. In this study, we examine the effects of exposure to several factors on the ability of ENS progenitors, grown as enteric neurospheres, to migrate and generate an ENS. Exposure to glial-cell-line-derived neurotrophic factor (GDNF) resulted in a 14-fold increase in neurosphere volume and a 12-fold increase in cell number. Following co-culture with embryonic gut or transplantation into the colon of postnatal mice in vivo, cells derived from GDNF-treated neurospheres showed a 2-fold increase in the distance migrated compared with controls. Our data show that the ability of enteric neurospheres to generate an ENS can be enhanced by exposure to appropriate factors.
  • Item
    Thumbnail Image
    Kif1bp loss in mice leads to defects in the peripheral and central nervous system and perinatal death
    Hirst, CS ; Stamp, LA ; Bergner, AJ ; Hao, MM ; Tran, MX ; Morgan, JM ; Dutschmann, M ; Allen, AM ; Paxinos, G ; Furlong, TM ; McKeown, SJ ; Young, HM (NATURE PORTFOLIO, 2017-11-30)
    Goldberg-Shprintzen syndrome is a poorly understood condition characterized by learning difficulties, facial dysmorphism, microcephaly, and Hirschsprung disease. GOSHS is due to recessive mutations in KIAA1279, which encodes kinesin family member 1 binding protein (KIF1BP, also known as KBP). We examined the effects of inactivation of Kif1bp in mice. Mice lacking Kif1bp died shortly after birth, and exhibited smaller brains, olfactory bulbs and anterior commissures, and defects in the vagal and sympathetic innervation of the gut. Kif1bp was found to interact with Ret to regulate the development of the vagal innervation of the stomach. Although newborn Kif1bp -/- mice had neurons along the entire bowel, the colonization of the gut by neural crest-derived cells was delayed. The data show an essential in vivo role for KIF1BP in axon extension from some neurons, and the reduced size of the olfactory bulb also suggests additional roles for KIF1BP. Our mouse model provides a valuable resource to understand GOSHS.
  • Item
    Thumbnail Image
    Colonizing while migrating: how do individual enteric neural crest cells behave?
    Young, HM ; Bergner, AJ ; Simpson, MJ ; McKeown, SJ ; Hao, MM ; Anderson, CR ; Enomoto, H (BMC, 2014-03-26)
    BACKGROUND: Directed cell migration is essential for normal development. In most of the migratory cell populations that have been analyzed in detail to date, all of the cells migrate as a collective from one location to another. However, there are also migratory cell populations that must populate the areas through which they migrate, and thus some cells get left behind while others advance. Very little is known about how individual cells behave to achieve concomitant directional migration and population of the migratory route. We examined the behavior of enteric neural crest-derived cells (ENCCs), which must both advance caudally to reach the anal end and populate each gut region. RESULTS: The behavior of individual ENCCs was examined using live imaging and mice in which ENCCs express a photoconvertible protein. We show that individual ENCCs exhibit very variable directionalities and speed; as the migratory wavefront of ENCCs advances caudally, each gut region is populated primarily by some ENCCs migrating non-directionally. After populating each region, ENCCs remain migratory for at least 24 hours. Endothelin receptor type B (EDNRB) signaling is known to be essential for the normal advance of the ENCC population. We now show that perturbation of EDNRB principally affects individual ENCC speed rather than directionality. The trajectories of solitary ENCCs, which occur transiently at the wavefront, were consistent with an unbiased random walk and so cell-cell contact is essential for directional migration. ENCCs migrate in close association with neurites. We showed that although ENCCs often use neurites as substrates, ENCCs lead the way, neurites are not required for chain formation and neurite growth is more directional than the migration of ENCCs as a whole. CONCLUSIONS: Each gut region is initially populated by sub-populations of ENCCs migrating non-directionally, rather than stopping. This might provide a mechanism for ensuring a uniform density of ENCCs along the growing gut.