Anatomy and Neuroscience - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 5 of 5
  • Item
    No Preview Available
    Patient Preferences for Time and Location of Infusible Therapies in Multiple Sclerosis and Neuroimmunologic Disorders.
    Rath, L ; Campagna, MP ; Stankovich, J ; Ellis, J ; Jokubaitis, V ; McCarthy, D ; Nesbitt, C ; Yeh, WZ ; Zhong, M ; Wesselingh, R ; Monif, M ; Richards, J ; Minh, VB ; Skibina, O ; Butzkueven, H ; van der Walt, A (Consortium of Multiple Sclerosis Centers, 2021)
    BACKGROUND: People with multiple sclerosis and neuroimmunologic disorders (herein referred to as patients) are increasingly treated with infusible monoclonal antibodies. This rise in demand has placed increased loads on current infusion services and mandates careful strategic planning. This study examined patient preferences for the timing and location of infusions and their association with demographic and disease variables to facilitate patient-focused strategic planning. METHODS: Ninety-one patients receiving an infusible therapy at an infusion service during March 2019 were asked to complete a questionnaire exploring eight domains, including preferences for time of infusions and location of infusion centers. Potential access to home-based treatment was included as an option. Unstructured (free-text) feedback on current service was also obtained. RESULTS: Eighty-three patients completed the survey (mean age, 42 years; 75% women). Infusions were predominantly natalizumab (66%) and ocrelizumab (25%). Of these patients, 71% were engaged in some form of work or study, and 83% of this group had to arrange time off from work or study to attend treatment. Seventy percent of patients would prefer their infusion before noon, and 60% would consider home-based infusions. Most used a car as their transport to the infusion service. CONCLUSIONS: These results suggest that patients are more likely to prefer infusible treatment in the morning and are open to home-based infusions. This study provides information for health services to target service delivery at peak preference times and consider alternate ways of delivering infusible treatments.
  • Item
    Thumbnail Image
    Multiple sclerosis risk variants regulate gene expression in innate and adaptive immune cells
    Gresle, MM ; Jordan, MA ; Stankovich, J ; Spelman, T ; Johnson, LJ ; Laverick, L ; Hamlett, A ; Smith, LD ; Jokubaitis, VG ; Baker, J ; Haartsen, J ; Taylor, B ; Charlesworth, J ; Bahlo, M ; Speed, TP ; Brown, MA ; Field, J ; Baxter, AG ; Butzkueven, H (LIFE SCIENCE ALLIANCE LLC, 2020-07)
    At least 200 single-nucleotide polymorphisms (SNPs) are associated with multiple sclerosis (MS) risk. A key function that could mediate SNP-encoded MS risk is their regulatory effects on gene expression. We performed microarrays using RNA extracted from purified immune cell types from 73 untreated MS cases and 97 healthy controls and then performed Cis expression quantitative trait loci mapping studies using additive linear models. We describe MS risk expression quantitative trait loci associations for 129 distinct genes. By extending these models to include an interaction term between genotype and phenotype, we identify MS risk SNPs with opposing effects on gene expression in cases compared with controls, namely, rs2256814 MYT1 in CD4 cells (q = 0.05) and rs12087340 RF00136 in monocyte cells (q = 0.04). The rs703842 SNP was also associated with a differential effect size on the expression of the METTL21B gene in CD8 cells of MS cases relative to controls (q = 0.03). Our study provides a detailed map of MS risk loci that function by regulating gene expression in cell types relevant to MS.
  • Item
    Thumbnail Image
    Axonally derived matrilin-2 induces proinflammatory responses that exacerbate autoimmune neuroinflammation
    Jonas, A ; Thiem, S ; Kuhlmann, T ; Wagener, R ; Aszodi, A ; Nowell, C ; Hagemeier, M ; Laverick, L ; Perreau, V ; Jokubaitis, V ; Emery, B ; Kilpatrick, T ; Butzkueven, H ; Gresle, M (AMER SOC CLINICAL INVESTIGATION INC, 2014-11)
    In patients with multiple sclerosis (MS) and mice with experimental autoimmune encephalomyelitis (EAE), inflammatory axonal injury is a major determinant of disability; however, the drivers of this injury are incompletely understood. Here, we used the EAE model and determined that the extracellular matrix protein matrilin-2 (MATN2) is an endogenous neuronal molecule that is regulated in association with inflammatory axonal injury. Compared with WT mice, mice harboring a deletion of Matn2 exhibited reduced disease severity and axon damage following induction of EAE. Evaluation of neuron-macrophage cocultures revealed that exogenous MATN2 specifically signals through TLR4 and directly induces expression of proinflammatory genes in macrophages, promoting axonal damage. Moreover, the MATN2-induced proinflammatory response was attenuated greatly in macrophages from Myd88 KO mice. Examination of brain sections from patients with MS revealed that MATN2 is expressed in lesions but not in normal-appearing white matter. Together, our results indicate that MATN2 is a deleterious endogenous neuroaxonal injury response signal that activates innate immune cells and could contribute to early axonal damage in CNS inflammatory diseases like MS.
  • Item
    Thumbnail Image
    Ceruloplasmin gene-deficient mice with experimental autoimmune encephalomyelitis show attenuated early disease evolution
    Gresle, MM ; Schulz, K ; Jonas, A ; Perreau, VM ; Cipriani, T ; Baxter, AG ; Miranda-Hernandez, S ; Field, J ; Jokubaitis, VG ; Cherny, R ; Volitakis, I ; David, S ; Kilpatrick, TJ ; Butzkueven, H (WILEY, 2014-06)
    We conducted a microarray study to identify genes that are differentially regulated in the spinal cords of mice with the inflammatory disease experimental autoimmune encephalomyelitis (EAE) relative to healthy mice. In total 181 genes with at least a two-fold increase in expression were identified, and most of these genes were associated with immune function. Unexpectedly, ceruloplasmin (Cp), a ferroxidase that converts toxic ferrous iron to its nontoxic ferric form and also promotes the efflux of iron from astrocytes in the CNS, was shown to be highly upregulated (13.2-fold increase) in EAE spinal cord. Expression of Cp protein is known to be increased in several neurological conditions, but the role of Cp regulation in CNS autoimmune disease is not known. To investigate this, we induced EAE in Cp gene knockout, heterozygous, and wild-type mice. Cp knockout mice were found to have slower disease evolution than wild-type mice (EAE days 13-17; P = 0.05). Interestingly, Cp knockout mice also exhibited a significant increase in the number of astrocytes with reactive morphology in early EAE compared with wild-type mice at the same stage of disease. CNS iron levels were not increased with EAE in these mice. Based on these observations, we propose that an increase in Cp expression could contribute to tissue damage in early EAE. In addition, endogenous CP either directly or indirectly inhibits astrocyte reactivity during early disease, which could also worsen early disease evolution.
  • Item
    Thumbnail Image
    Gas6 deficiency increases oligodendrocyte loss and microglial activation in response to cuprizone-induced demyelination
    Binder, MD ; Cate, HS ; Prieto, AL ; Kemper, D ; Butzkueven, H ; Gresle, MM ; Cipriani, T ; Jokubaitis, VG ; Carmeliet, P ; Kilpatrick, TJ (SOC NEUROSCIENCE, 2008-05-14)
    The TAM family of receptor protein tyrosine kinases comprises three known members, namely Tyro3, Axl, and Mer. These receptors are widely expressed in the nervous system, including by oligodendrocytes, the cell type responsible for myelinating the CNS. We examined the potential role of the TAM family and of their principle cognate ligand, Gas6 (growth arrest gene 6), in modulating the phenotype of the cuprizone model of demyelination. We found that the expression profiles of Axl, Mer, and Gas6 mRNA were increased in the corpus callosum in a temporal profile correlating with the increased migration and proliferation of microglia/macrophages in this model. In contrast, expression of Tyro3 decreased, correlating with the loss of oligodendrocytes. Gas6 both promoted in vitro survival of oligodendrocytes (39.3 +/- 3.1 vs 11.8 +/- 2.4%) and modulated markers of activation in purified cultures of microglia (tumor necrosis factor alpha mRNA expression was reduced approximately 48%). In Gas6-/- mice subjected to cuprizone-challenge, demyelination was greater than in control mice, within the rostral region of the corpus callosum, as assessed by luxol fast blue staining (myelination reduced by 36%) and by ultrastructural analysis. An increased loss of Gst-pi (glutathione S-transferase-pi)-positive oligodendrocytes was also identified throughout the corpus callosum of Gas6-/- mice. Microglial marker expression (ionized calcium-binding adapter molecule 1) was increased in Gas6-/- mice but was restricted to the rostral corpus callosum. Therefore, TAM receptor activation and regulation can independently influence both oligodendrocyte survival and the microglial response after CNS damage.