Anatomy and Neuroscience - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 6 of 6
  • Item
    Thumbnail Image
    Suppressor of Cytokine Signalling 2 (SOCS2) Regulates Numbers of Mature Newborn Adult Hippocampal Neurons and Their Dendritic Spine Maturation
    Basrai, HS ; Turbic, A ; Christie, KJ ; Turnley, AM (SPRINGER/PLENUM PUBLISHERS, 2017-07)
    Overexpression of suppressor of cytokine signalling 2 (SOCS2) has been shown to promote hippocampal neurogenesis in vivo and promote neurite outgrowth of neurons in vitro. In the adult mouse brain, SOCS2 is most highly expressed in the hippocampal CA3 region and at lower levels in the dentate gyrus, an expression pattern that suggests a role in adult neurogenesis. Herein we examine generation of neuroblasts and their maturation into more mature neurons in SOCS2 null (SOCS2KO) mice. EdU was administered for 7 days to label proliferative neural precursor cells. The number of EdU-labelled doublecortin+ neuroblasts and NeuN+ mature neurons they generated was examined at day 8 and day 35, respectively. While no effect of SOCS2 deletion was observed in neuroblast generation, it reduced the numbers of EdU-labelled mature newborn neurons at 35 days. As SOCS2 regulates neurite outgrowth and dentate granule neurons project to the CA3 region, alterations in dendritic arborisation or spine formation may have correlated with the decreased numbers of EdU-labelled newborn neurons. SOCS2KO mice were crossed with Nes-CreERT2/mTmG mice, in which membrane eGFP is inducibly expressed in neural precursor cells and their progeny, and the dendrite and dendritic spine morphology of newborn neurons were examined at 35 days. SOCS2 deletion had no effect on total dendrite length, number of dendritic segments, number of branch points or total dendritic spine density but increased the number of mature "mushroom" spines. Our results suggest that endogenous SOCS2 regulates numbers of EdU-labelled mature newborn adult hippocampal neurons, possibly by mediating their survival and that this may be via a mechanism regulating dendritic spine maturation.
  • Item
    Thumbnail Image
    Suppressor of Cytokine Signaling-2 (SOCS2) Regulates the Microglial Response and Improves Functional Outcome after Traumatic Brain Injury in Mice
    Basrai, HS ; Christie, KJ ; Turbic, A ; Bye, N ; Turnley, AM ; Scavone, C (PUBLIC LIBRARY SCIENCE, 2016-04-12)
    Traumatic brain injury (TBI) is frequently characterized by neuronal, axonal and myelin loss, reactive gliosis and neuroinflammation, often associated with functional deficits. Endogenous repair mechanisms include production of new neurons from precursor cells, but usually the new neurons fail to integrate and survive more than a few weeks. This is in part mediated by the toxic and inflammatory environment present in the injured brain which activates precursor cells to proliferate and differentiate but limits survival of the newborn progeny. Therefore, an understanding of mechanisms that regulate production and survival of newborn neurons and the neuroinflammatory response after brain injury may lead to therapeutic options to improve outcomes. Suppressor of Cytokine Signaling 2 (SOCS2) promotes hippocampal neurogenesis and survival of newborn neurons in the adult brain and regulates anti-inflammatory responses in the periphery, suggesting it may be a useful candidate to improve outcomes of TBI. In this study the functional and cellular responses of SOCS2 over-expressing transgenic (SOCS2Tg) mice were compared to wildtype littermates following mild or moderately severe TBI. Unlike wildtype controls, SOCS2Tg mice showed functional improvement on a ladder test, with a smaller lesion volume at 7d post injury and increased numbers of proliferative CD11b+ microglia/macrophages at 35d post-injury in the mild injury paradigm. At 7d post-moderately severe injury there was an increase in the area covered by cells expressing an anti-inflammatory M2 phenotype marker (CD206+) but no difference in cells with a pro-inflammatory M1 phenotype marker (CD16/32+). No effect of SOCS2 overexpression was observed in production or survival of newborn neurons, even in the presence of the neuroprotective agent erythropoietin (EPO). Therefore, SOCS2 may improve outcome of TBI in mice by regulating aspects of the neuroinflammatory response, promoting a more anti-inflammatory environment, although this was not sufficient to enhance survival of newborn cortical neurons.
  • Item
    Thumbnail Image
    Regulation of endogenous neural stem/progenitor cells for neural repair-factors that promote neurogenesis and gliogenesis in the normal and damaged brain
    Christie, KJ ; Turnley, AM (FRONTIERS MEDIA SA, 2013-01-18)
    Neural stem/precursor cells in the adult brain reside in the subventricular zone (SVZ) of the lateral ventricles and the subgranular zone (SGZ) of the dentate gyrus in the hippocampus. These cells primarily generate neuroblasts that normally migrate to the olfactory bulb (OB) and the dentate granule cell layer respectively. Following brain damage, such as traumatic brain injury, ischemic stroke or in degenerative disease models, neural precursor cells from the SVZ in particular, can migrate from their normal route along the rostral migratory stream (RMS) to the site of neural damage. This neural precursor cell response to neural damage is mediated by release of endogenous factors, including cytokines and chemokines produced by the inflammatory response at the injury site, and by the production of growth and neurotrophic factors. Endogenous hippocampal neurogenesis is frequently also directly or indirectly affected by neural damage. Administration of a variety of factors that regulate different aspects of neural stem/precursor biology often leads to improved functional motor and/or behavioral outcomes. Such factors can target neural stem/precursor proliferation, survival, migration and differentiation into appropriate neuronal or glial lineages. Newborn cells also need to subsequently survive and functionally integrate into extant neural circuitry, which may be the major bottleneck to the current therapeutic potential of neural stem/precursor cells. This review will cover the effects of a range of intrinsic and extrinsic factors that regulate neural stem/precursor cell functions. In particular it focuses on factors that may be harnessed to enhance the endogenous neural stem/precursor cell response to neural damage, highlighting those that have already shown evidence of preclinical effectiveness and discussing others that warrant further preclinical investigation.
  • Item
    Thumbnail Image
    Is integration and survival of newborn neurons the bottleneck for effective neural repair by endogenous neural precursor cells?
    Turnley, AM ; Basrai, HS ; Christie, KJ (FRONTIERS RESEARCH FOUNDATION, 2014-02-20)
    After two decades of research the existence of adult neural precursor cells and the phenomenon of adult neurogenesis is well established. However, there has been little or no effective harnessing of these endogenous cells to promote functional neuronal replacement following neural injury or disease. Neural precursor cells can respond to neural damage by proliferating, migrating to the site of injury, and differentiating into neuronal or glial lineages. However, after a month or so, very few or no newborn neurons can be detected, suggesting that even though neuroblasts are generated, they generally fail to survive as mature neurons and contribute to the local circuitry. Is this lack of survival and integration one of the major bottlenecks that inhibits effective neuronal replacement and subsequent repair of the nervous system following injury or disease? In this perspective article the possibility that this bottleneck can be targeted to enhance the integration and subsequent survival of newborn neurons will be explored and will suggest some possible mechanisms that may need to be modulated for this to occur.
  • Item
    Thumbnail Image
    ADULT HIPPOCAMPAL NEUROGENESIS, RHO KINASE INHIBITION AND ENHANCEMENT OF NEURONAL SURVIVAL
    Christie, KJ ; Turbic, A ; Turnley, AM (PERGAMON-ELSEVIER SCIENCE LTD, 2013-09-05)
    Adult neurogenesis occurs throughout life; however the majority of new neurons do not survive. Enhancing the survival of these new neurons will increase the likelihood that these neurons could return function following injury. Inhibition of Rho kinase is known to increase neurite outgrowth and regeneration. Previous work in our lab has demonstrated a role for Rho kinase inhibition and survival of new born neurons from the sub-ventricular zone. In this study we examined the role of Rho kinase inhibition on hippocampal neurogenesis. Two concentrations of Rho kinase inhibitor Y27632 (20 and 100 μM) and the proliferative marker EdU were infused in the lateral ventricle for 7 days. Quantification of doublecortin+/EdU+ cells on the 7th day showed that cell numbers were not significantly different, suggesting no effect on neuroblast generation. Following infusion of 100μM Y27632, the number of newborn NeuN+/EdU+ neurons at 35 days in the granular cell layer of the dentate gyrus of the ipsilateral side of the infusion did not display a significant difference; however there was an increase on the contralateral side, suggesting a dose effect. Infusion of a lower dose (20 μM) of Y27632 resulted in an increase in NeuN+/EdU+ cells in the granular cell layer of the ipsilateral side at 35 days. These mice also demonstrated enhanced spatial memory as tested by the Y maze with no significant changes in anxiety or novel object recognition. Rho kinase inhibition enhanced the survival of new born neurons in the dentate gyrus with a specific dosage effect. These results suggest that inhibition of Rho kinase following injury could be beneficial for increasing the survival of new neurons that may aid recovery.
  • Item