Anatomy and Neuroscience - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 31
  • Item
    Thumbnail Image
    Control of Neuronal Survival and Development Using Conductive Diamond
    Falahatdoost, S ; Prawer, YDJ ; Peng, D ; Chambers, A ; Zhan, H ; Pope, L ; Stacey, A ; Ahnood, A ; Al Hashem, HN ; De Leon, SE ; Garrett, DJ ; Fox, K ; Clark, MB ; Ibbotson, MR ; Prawer, S ; Tong, W (AMER CHEMICAL SOC, 2024-01-17)
    This study demonstrates the control of neuronal survival and development using nitrogen-doped ultrananocrystalline diamond (N-UNCD). We highlight the role of N-UNCD in regulating neuronal activity via near-infrared illumination, demonstrating the generation of stable photocurrents that enhance neuronal survival and neurite outgrowth and foster a more active, synchronized neuronal network. Whole transcriptome RNA sequencing reveals that diamond substrates improve cellular-substrate interaction by upregulating extracellular matrix and gap junction-related genes. Our findings underscore the potential of conductive diamond as a robust and biocompatible platform for noninvasive and effective neural tissue engineering.
  • Item
    Thumbnail Image
    Fear extinction is regulated by the activity of long noncoding RNAs at the synapse
    Liau, W-S ; Zhao, Q ; Bademosi, A ; Gormal, RS ; Gong, H ; Marshall, PR ; Periyakaruppiah, A ; Madugalle, SU ; Zajaczkowski, EL ; Leighton, LJ ; Ren, H ; Musgrove, M ; Davies, J ; Rauch, S ; He, C ; Dickinson, BC ; Li, X ; Wei, W ; Meunier, FA ; Fernandez-Moya, SM ; Kiebler, MA ; Srinivasan, B ; Banerjee, S ; Clark, M ; Spitale, RC ; Bredy, TW (NATURE PORTFOLIO, 2023-11-22)
    Long noncoding RNAs (lncRNAs) represent a multidimensional class of regulatory molecules that are involved in many aspects of brain function. Emerging evidence indicates that lncRNAs are localized to the synapse; however, a direct role for their activity in this subcellular compartment in memory formation has yet to be demonstrated. Using lncRNA capture-seq, we identified a specific set of lncRNAs that accumulate in the synaptic compartment within the infralimbic prefrontal cortex of adult male C57/Bl6 mice. Among these was a splice variant related to the stress-associated lncRNA, Gas5. RNA immunoprecipitation followed by mass spectrometry and single-molecule imaging revealed that this Gas5 isoform, in association with the RNA binding proteins G3BP2 and CAPRIN1, regulates the activity-dependent trafficking and clustering of RNA granules. In addition, we found that cell-type-specific, activity-dependent, and synapse-specific knockdown of the Gas5 variant led to impaired fear extinction memory. These findings identify a new mechanism of fear extinction that involves the dynamic interaction between local lncRNA activity and RNA condensates in the synaptic compartment.
  • Item
    No Preview Available
    Increased paternal corticosterone exposure influences offspring behaviour and expression of urinary pheromones
    Hoffmann, LB ; McVicar, EA ; Harris, RV ; Collar-Fernandez, C ; Clark, MB ; Hannan, AJ ; Pang, TY (BMC, 2023-09-05)
    BACKGROUND: Studies have shown that paternal stress prior to conception can influence the innate behaviours of their offspring. The evolutionary impacts of such intergenerational effects are therefore of considerable interest. Our group previously showed in a model of daily stress that glucocorticoid treatment of adult male mouse breeders prior to conception leads to increased anxiety-related behaviours in male offspring. Here, we aimed to understand the transgenerational effects of paternal stress exposure on the social behaviour of progeny and its potential influence on reproductive success. RESULTS: We assessed social parameters including social reward, male attractiveness and social dominance, in the offspring (F1) and grand-offspring (F2). We report that paternal corticosterone treatment was associated with increased display of subordination towards other male mice. Those mice were unexpectedly more attractive to female mice while expressing reduced levels of the key rodent pheromone Darcin, contrary to its conventional role in driving female attraction. We investigated the epigenetic regulation of major urinary protein (Mup) expression by performing the first Oxford Nanopore direct methylation of sperm DNA in a mouse model of stress, but found no differences in Mup genes that could be attributed to corticosterone-treatment. Furthermore, no overt differences of the prefrontal cortex transcriptome were found in F1 offspring, implying that peripheral mechanisms are likely contributing to the phenotypic differences. Interestingly, no phenotypic differences were observed in the F2 grand-offspring. CONCLUSIONS: Overall, our findings highlight the potential of moderate paternal stress to affect intergenerational (mal)adaptive responses, informing future studies of adaptiveness in rodents, humans and other species.
  • Item
    Thumbnail Image
    Pervasive effects of RNA degradation on Nanopore direct RNA sequencing
    Prawer, YDJ ; Gleeson, J ; De Paoli-Iseppi, R ; Clark, MB (Oxford University Press, 2023-03-29)
    Oxford Nanopore direct RNA sequencing (DRS) is capable of sequencing complete RNA molecules and accurately measuring gene and isoform expression. However, as DRS is designed to profile intact RNA, expression quantification may be more heavily dependent upon RNA integrity than alternative RNA sequencing methodologies. It is currently unclear how RNA degradation impacts DRS or whether it can be corrected for. To assess the impact of RNA integrity on DRS, we performed a degradation time series using SH-SY5Y neuroblastoma cells. Our results demonstrate that degradation is a significant and pervasive factor that can bias DRS measurements, including a reduction in library complexity resulting in an overrepresentation of short genes and isoforms. Degradation also biases differential expression analyses; however, we find that explicit correction can almost fully recover meaningful biological signal. In addition, DRS provided less biased profiling of partially degraded samples than Nanopore PCR-cDNA sequencing. Overall, we find that samples with RNA integrity number (RIN) > 9.5 can be treated as undegraded and samples with RIN > 7 can be utilized for DRS with appropriate correction. These results establish the suitability of DRS for a wide range of samples, including partially degraded in vivo clinical and post-mortem samples, while limiting the confounding effect of degradation on expression quantification.
  • Item
    Thumbnail Image
    Genome-wide discovery of human splicing branchpoints
    Mercer, TR ; Clark, MB ; Andersen, SB ; Brunck, ME ; Haerty, W ; Crawford, J ; Taft, RJ ; Nielsen, LK ; Dinger, ME ; Mattick, JS (COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT, 2015-02)
    During the splicing reaction, the 5' intron end is joined to the branchpoint nucleotide, selecting the next exon to incorporate into the mature RNA and forming an intron lariat, which is excised. Despite a critical role in gene splicing, the locations and features of human splicing branchpoints are largely unknown. We use exoribonuclease digestion and targeted RNA-sequencing to enrich for sequences that traverse the lariat junction and, by split and inverted alignment, reveal the branchpoint. We identify 59,359 high-confidence human branchpoints in >10,000 genes, providing a first map of splicing branchpoints in the human genome. Branchpoints are predominantly adenosine, highly conserved, and closely distributed to the 3' splice site. Analysis of human branchpoints reveals numerous novel features, including distinct features of branchpoints for alternatively spliced exons and a family of conserved sequence motifs overlapping branchpoints we term B-boxes, which exhibit maximal nucleotide diversity while maintaining interactions with the keto-rich U2 snRNA. Different B-box motifs exhibit divergent usage in vertebrate lineages and associate with other splicing elements and distinct intron-exon architectures, suggesting integration within a broader regulatory splicing code. Lastly, although branchpoints are refractory to common mutational processes and genetic variation, mutations occurring at branchpoint nucleotides are enriched for disease associations.
  • Item
    Thumbnail Image
    Improved definition of the mouse transcriptome via targeted RNA sequencing
    Bussotti, G ; Leonardi, T ; Clark, MB ; Mercer, TR ; Crawford, J ; Malquori, L ; Notredame, C ; Dinger, ME ; Mattick, JS ; Enright, AJ (COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT, 2016-05)
    Targeted RNA sequencing (CaptureSeq) uses oligonucleotide probes to capture RNAs for sequencing, providing enriched read coverage, accurate measurement of gene expression, and quantitative expression data. We applied CaptureSeq to refine transcript annotations in the current murine GRCm38 assembly. More than 23,000 regions corresponding to putative or annotated long noncoding RNAs (lncRNAs) and 154,281 known splicing junction sites were selected for targeted sequencing across five mouse tissues and three brain subregions. The results illustrate that the mouse transcriptome is considerably more complex than previously thought. We assemble more complete transcript isoforms than GENCODE, expand transcript boundaries, and connect interspersed islands of mapped reads. We describe a novel filtering pipeline that identifies previously unannotated but high-quality transcript isoforms. In this set, 911 GENCODE neighboring genes are condensed into 400 expanded gene models. Additionally, 594 GENCODE lncRNAs acquire an open reading frame (ORF) when their structure is extended with CaptureSeq. Finally, we validate our observations using current FANTOM and Mouse ENCODE resources.
  • Item
    Thumbnail Image
    Identification of cell barcodes from long-read single-cell RNA-seq with BLAZE
    You, Y ; Prawer, YDJ ; De Paoli-Iseppi, R ; Hunt, CPJ ; Parish, CL ; Shim, H ; Clark, MB (BMC, 2023-04-06)
    Long-read single-cell RNA sequencing (scRNA-seq) enables the quantification of RNA isoforms in individual cells. However, long-read scRNA-seq using the Oxford Nanopore platform has largely relied upon matched short-read data to identify cell barcodes. We introduce BLAZE, which accurately and efficiently identifies 10x cell barcodes using only nanopore long-read scRNA-seq data. BLAZE outperforms the existing tools and provides an accurate representation of the cells present in long-read scRNA-seq when compared to matched short reads. BLAZE simplifies long-read scRNA-seq while improving the results, is compatible with downstream tools accepting a cell barcode file, and is available at https://github.com/shimlab/BLAZE .
  • Item
    No Preview Available
    Universal Alternative Splicing of Noncoding Exons
    Deveson, IW ; Brunck, ME ; Blackburn, J ; Tseng, E ; Hon, T ; Clark, TA ; Clark, MB ; Crawford, J ; Dinger, ME ; Nielsen, LK ; Mattick, JS ; Mercer, TR (CELL PRESS, 2018-02-28)
    The human transcriptome is so large, diverse, and dynamic that, even after a decade of investigation by RNA sequencing (RNA-seq), we have yet to resolve its true dimensions. RNA-seq suffers from an expression-dependent bias that impedes characterization of low-abundance transcripts. We performed targeted single-molecule and short-read RNA-seq to survey the transcriptional landscape of a single human chromosome (Hsa21) at unprecedented resolution. Our analysis reaches the lower limits of the transcriptome, identifying a fundamental distinction between protein-coding and noncoding gene content: almost every noncoding exon undergoes alternative splicing, producing a seemingly limitless variety of isoforms. Analysis of syntenic regions of the mouse genome shows that few noncoding exons are shared between human and mouse, yet human splicing profiles are recapitulated on Hsa21 in mouse cells, indicative of regulation by a deeply conserved splicing code. We propose that noncoding exons are functionally modular, with alternative splicing generating an enormous repertoire of potential regulatory RNAs and a rich transcriptional reservoir for gene evolution.
  • Item
    Thumbnail Image
    Long-read RNA sequencing identifies polyadenylation elongation and differential transcript usage of host transcripts during SARS-CoV-2 in vitro infection
    Chang, JJ-Y ; Gleeson, J ; Rawlinson, D ; Pitt, M ; De Paoli-Iseppi, R ; Zhou, C ; Mordant, F ; Londrigan, S ; Clark, M ; Subbarao, K ; Stinear, T ; Coin, LJM ( 2021-12-15)
    Better methods to interrogate host-pathogen interactions during Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infections are imperative to help understand and prevent this disease. Here we implemented RNA-sequencing (RNA-seq) combined with the Oxford Nanopore Technologies (ONT) long-reads to measure differential host gene expression, transcript polyadenylation and isoform usage within various epithelial cell lines permissive and non-permissive for SARS-CoV-2 infection. SARS-CoV-2-infected and mock-infected Vero (African green monkey kidney epithelial cells), Calu-3 (human lung adenocarcinoma epithelial cells), Caco-2 (human colorectal adenocarcinoma epithelial cells) and A549 (human lung carcinoma epithelial cells) were analysed over time (0, 2, 24, 48 hours). Differential polyadenylation was found to occur in both infected Calu-3 and Vero cells during a late time point (48 hpi), with Gene Ontology (GO) terms such as viral transcription and translation shown to be significantly enriched in Calu-3 data. Poly(A) tails showed increased lengths in the majority of the differentially polyadenylated transcripts in Calu-3 and Vero cell lines (up to ~136 nt in mean poly(A) length, padj = 0.029). Of these genes, ribosomal protein genes such as RPS4X and RPS6 also showed downregulation in expression levels, suggesting the importance of ribosomal protein genes during infection. Furthermore, differential transcript usage was identified in Caco-2, Calu-3 and Vero cells, including transcripts of genes such as GSDMB and KPNA2 , which have previously been implicated in SARS-CoV-2 infections. Overall, these results highlight the potential role of differential polyadenylation and transcript usage in host immune response or viral manipulation of host mechanisms during infection, and therefore, showcase the value of long-read sequencing in identifying less-explored host responses to disease.
  • Item
    No Preview Available
    Using long-read RNA sequencing to decipher the role of RNA isoforms in disease
    De Paoli-Iseppi, R ; Joshi, S ; Wrzesinski, T ; Harrison, PJ ; Haerty, W ; Tunbridge, EM ; Clark, MB (Elsevier BV, 2022-03)
    Accurate quantification of genes and their mRNA products is essential to understanding health and disease. In humans, processes such as alternative splicing cause almost all genes to express multiple mRNA products (isoforms), which can have different functions. In addition, aberrant splicing is a common cause of disease. Standard short-read RNA sequencing (RNA-seq) methodologies have limitations in identifying isoforms. In contrast, long-read RNA-seq can address this challenge by covering the entire mRNA sequence in a single read and so identify and quantify the isoforms present. We have utilised long-read RNA-seq to characterise isoforms involved in disease risk, genetic disease and viral infection. Investigation of >30 neuropsychiatric disease risk genes in human brain identified hundreds of novel isoforms, including many genes where most expression was from previously undiscovered isoforms. Exemplifying this, the calcium channel CACNA1C expressed >200 novel isoforms with abundant splice variants modifying channel regions regulating activation voltage and channel conductance. The accurate characterisation of RNA isoforms enabled by long-read RNA-seq enables the translation of genomic findings into a pathophysiological understanding of disease.