Anatomy and Neuroscience - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 13
  • Item
    Thumbnail Image
    Antigen-loaded MR1 tetramers define T cell receptor heterogeneity in mucosal-associated invariant T cells
    Reantragoon, R ; Corbett, AJ ; Sakala, IG ; Gherardin, NA ; Furness, JB ; Chen, Z ; Eckle, SBG ; Uldrich, AP ; Birkinshaw, RW ; Patel, O ; Kostenko, L ; Meehan, B ; Kedzierska, K ; Liu, L ; Fairlie, DP ; Hansen, TH ; Godfrey, DI ; Rossjohn, J ; McCluskey, J ; Kjer-Nielsen, L (ROCKEFELLER UNIV PRESS, 2013-10-21)
    Mucosal-associated invariant T cells (MAIT cells) express a semi-invariant T cell receptor (TCR) α-chain, TRAV1-2-TRAJ33, and are activated by vitamin B metabolites bound by the major histocompatibility complex (MHC)-related class I-like molecule, MR1. Understanding MAIT cell biology has been restrained by the lack of reagents to specifically identify and characterize these cells. Furthermore, the use of surrogate markers may misrepresent the MAIT cell population. We show that modified human MR1 tetramers loaded with the potent MAIT cell ligand, reduced 6-hydroxymethyl-8-D-ribityllumazine (rRL-6-CH₂OH), specifically detect all human MAIT cells. Tetramer(+) MAIT subsets were predominantly CD8(+) or CD4(-)CD8(-), although a small subset of CD4(+) MAIT cells was also detected. Notably, most human CD8(+) MAIT cells were CD8α(+)CD8β(-/lo), implying predominant expression of CD8αα homodimers. Tetramer-sorted MAIT cells displayed a T(H)1 cytokine phenotype upon antigen-specific activation. Similarly, mouse MR1-rRL-6-CH₂OH tetramers detected CD4(+), CD4(-)CD8(-) and CD8(+) MAIT cells in Vα19 transgenic mice. Both human and mouse MAIT cells expressed a broad TCR-β repertoire, and although the majority of human MAIT cells expressed TRAV1-2-TRAJ33, some expressed TRAJ12 or TRAJ20 genes in conjunction with TRAV1-2. Accordingly, MR1 tetramers allow precise phenotypic characterization of human and mouse MAIT cells and revealed unanticipated TCR heterogeneity in this population.
  • Item
    Thumbnail Image
    ENHANCEMENT OF GRANULATION OF ADRENERGIC STORAGE VESICLES IN DRUG-FREE SOLUTION
    IWAYAMA, T ; FURNESS, JB (ROCKEFELLER UNIV PRESS, 1971)
  • Item
    Thumbnail Image
    New Roles of Serotonin and Tachykinins in Intestinal Mucositis?
    Callaghan, B ; Furness, JB (SPRINGER, 2013-12)
  • Item
    Thumbnail Image
    Structure and innervation of the extrahepatic biliary system in the Australian possum, Trichosurus vulpecula.
    Padbury, RT ; Baker, RA ; Messenger, JP ; Toouli, J ; Furness, JB (Hindawi Limited, 1993)
    The morphology, microanatomy and innervation of the biliary tree of the Australian possum, Trichosurus vulpecula, was examined. The gross morphology of the gallbladder, hepatic and cystic ducts, and the course of the common bile duct, conforms to those of other species. The sphincter of Oddi has an extraduodenal segment that extends 15mm from the duodenal wall; within this segment the pancreatic and common bile ducts are ensheathed together by sphincter muscle. Their lumens unite to form a common channel within the terminal intraduodenal segment. Nerve cell bodies of the gallbladder were found in an inter-connecting network of ganglia that were located in the serosa, muscularis and mucosa. Nerve fibres innervated the muscle, arterioles and the mucosa. Few ganglia were found along the supra sphincteric portion of the common bile duct. Nerve trunks followed the duct and a dense nerve fibre plexus was found in the mucosa. In the sphincter most ganglia were located in two plexuses, the first between the layers of the external sphincter muscle, which was continuous with the external muscle of the duodenum, and the second was associated with the internal sphincter muscle. Nerve fibres were numerous in the sphincter muscle, and were also found in the subepithelial and periglandular plexuses of both the pancreatic and common bile ducts.
  • Item
    No Preview Available
    Myenteric neurons of the mouse small intestine undergo significant electrophysiological and morphological changes during postnatal development
    Foong, JPP ; Nguyen, TV ; Furness, JB ; Bornstein, JC ; Young, HM (WILEY, 2012-05)
    Organized motility patterns in the gut depend on circuitry within the enteric nervous system (ENS), but little is known about the development of electrophysiological properties and synapses within the ENS. We examined the electrophysiology and morphology of myenteric neurons in the mouse duodenum at three developmental stages: postnatal day (P)0, P10–11, and adult. Like adults, two main classes of neurons could be identified at P0 and P10–11 based on morphology: neurons with multiple long processes that projected circumferentially (Dogiel type II morphology) and neurons with a single long process. However, postnatal Dogiel type II neurons differed in several electrophysiological properties from adult Dogiel type II neurons. P0 and P10–11 Dogiel type II neurons exhibited very prominent Ca(2+)-mediated after depolarizing potentials (ADPs) following action potentials compared to adult neurons. Adult Dogiel type II neurons are characterized by the presence of a prolonged after hyperpolarizing potential (AHP), but AHPs were very rarely observed at P0. The projection lengths of the long processes of Dogiel type II neurons were mature by P10–11. Uniaxonal neurons in adults typically have fast excitatory postsynaptic potentials (fEPSPs, ‘S-type' electrophysiology) mainly mediated by nicotinic receptors. Nicotinic-fEPSPs were also recorded from neurons with a single long process at P0 and P10–11. However, these neurons underwent major developmental changes in morphology, from predominantly filamentous neurites at birth to lamellar dendrites in mature mice. Unlike Dogiel type II neurons, the projection lengths of neurons with a single long process matured after P10–11. Slow EPSPs were rarely observed in P0/P10–11 neurons. This work shows that, although functional synapses are present and two classes of neurons can be distinguished electrophysiologically and morphologically at P0, major changes in electrophysiological properties and morphology occur during the postnatal development of the ENS.
  • Item
    No Preview Available
    Prominent contribution of L-type Ca2+ channels to cutaneous neurovascular transmission that is revealed after spinal cord injury augments vasoconstriction
    Al Dera, H ; Habgood, MD ; Furness, JB ; Brock, JA (AMER PHYSIOLOGICAL SOC, 2012-02)
    In patients with spinal cord injury (SCI), somatosympathetic reflexes produce exaggerated decreases in skin blood flow below the lesion. This hypoperfusion appears to result from an increased responsiveness of cutaneous arterial vessels to neural activation. Here we investigated the mechanisms that underlie SCI-induced enhancement of neurovascular transmission in a cutaneous vessel, the rat tail artery. Isometric contractions of arterial segments from T11 spinal cord transected and sham-operated rats were compared 6 wk postoperatively. SCI more than doubled the amplitudes of contractions of arteries in response to moderate frequencies of nerve stimulation (0.1 to 1 Hz). In arteries from SCI rats, but not those from sham-operated rats, the L-type Ca(2+) channel blocker nifedipine (1 μM) reduced the amplitudes of nerve-evoked contractions. Furthermore, while the sensitivity to the agonists phenylephrine (α(1)-adrenoceptor selective) and clonidine (α(2)-adrenoceptor selective) did not differ significantly between arteries from SCI and sham-operated rats, nifedipine had a greater inhibitory effect on contractions to both agents in arteries from SCI rats. Although sensitivity to clonidine was unchanged, SCI selectively reduced the contribution of postjunctional α(2)-adenceptors to nerve-evoked contractions. In arteries from unoperated rats, the L-type channel agonist BAY K 8644 (0.1 μM) produced a similar enhancement of nerve-evoked contraction to that produced by SCI and also selectively reduced the contribution of α(2)-adrenceptors to these responses. Together the findings demonstrate that the SCI-induced enhancement of neurovascular transmission in the rat tail artery can largely be accounted for by an increased contribution of L-type Ca(2+) channels to activation of the vascular smooth muscle.
  • Item
    No Preview Available
    Transplanted progenitors generate functional enteric neurons in the postnatal colon
    Hotta, R ; Stamp, LA ; Foong, JPP ; McConnell, SN ; Bergner, AJ ; Anderson, RB ; Enomoto, H ; Newgreen, DF ; Obermayr, F ; Furness, JB ; Young, HM (AMER SOC CLINICAL INVESTIGATION INC, 2013-03)
    Cell therapy has the potential to treat gastrointestinal motility disorders caused by diseases of the enteric nervous system. Many studies have demonstrated that various stem/progenitor cells can give rise to functional neurons in the embryonic gut; however, it is not yet known whether transplanted neural progenitor cells can migrate, proliferate, and generate functional neurons in the postnatal bowel in vivo. We transplanted neurospheres generated from fetal and postnatal intestinal neural crest-derived cells into the colon of postnatal mice. The neurosphere-derived cells migrated, proliferated, and generated neurons and glial cells that formed ganglion-like clusters within the recipient colon. Graft-derived neurons exhibited morphological, neurochemical, and electrophysiological characteristics similar to those of enteric neurons; they received synaptic inputs; and their neurites projected to muscle layers and the enteric ganglia of the recipient mice. These findings show that transplanted enteric neural progenitor cells can generate functional enteric neurons in the postnatal bowel and advances the notion that cell therapy is a promising strategy for enteric neuropathies.
  • Item
    Thumbnail Image
    The gut as a sensory organ
    Furness, JB ; Rivera, LR ; Cho, H-J ; Bravo, DM ; Callaghan, B (NATURE PUBLISHING GROUP, 2013-12)
    The gastrointestinal tract presents the largest and most vulnerable surface to the outside world. Simultaneously, it must be accessible and permeable to nutrients and must defend against pathogens and potentially injurious chemicals. Integrated responses to these challenges require the gut to sense its environment, which it does through a range of detection systems for specific chemical entities, pathogenic organisms and their products (including toxins), as well as physicochemical properties of its contents. Sensory information is then communicated to four major effector systems: the enteroendocrine hormonal signalling system; the innervation of the gut, both intrinsic and extrinsic; the gut immune system; and the local tissue defence system. Extensive endocrine-neuro-immune-organ-defence interactions are demonstrable, but under-investigated. A major challenge is to develop a comprehensive understanding of the integrated responses of the gut to the sensory information it receives. A major therapeutic opportunity exists to develop agents that target the receptors facing the gut lumen.
  • Item
    Thumbnail Image
    Knock out of neuronal nitric oxide synthase exacerbates intestinal ischemia/reperfusion injury in mice
    Rivera, LR ; Pontell, L ; Cho, H-J ; Castelucci, P ; Thacker, M ; Poole, DP ; Frugier, T ; Furness, JB (SPRINGER, 2012-08)
    Recent investigation of the intestine following ischemia and reperfusion (I/R) has revealed that nitric oxide synthase (NOS) neurons are more strongly affected than other neuron types. This implies that NO originating from NOS neurons contributes to neuronal damage. However, there is also evidence of the neuroprotective effects of NO. In this study, we compared the effects of I/R on the intestines of neuronal NOS knockout (nNOS(-/-)) mice and wild-type mice. I/R caused histological damage to the mucosa and muscle and infiltration of neutrophils into the external muscle layers. Damage to the mucosa and muscle was more severe and greater infiltration by neutrophils occurred in the first 24 h in nNOS(-/-) mice. Immunohistochemistry for the contractile protein, α-smooth muscle actin, was used to evaluate muscle damage. Smooth muscle actin occurred in the majority of smooth muscle cells in the external musculature of normal mice but was absent from most cells and was reduced in the cytoplasm of other cells following I/R. The loss was greater in nNOS(-/-) mice. Basal contractile activity of the longitudinal muscle and contractile responses to nerve stimulation or a muscarinic agonist were reduced in regions subjected to I/R and the effects were greater in nNOS(-/-) mice. Reductions in responsiveness also occurred in regions of operated mice not subjected to I/R. This is attributed to post-operative ileus that is not significantly affected by knockout of nNOS. The results indicate that deleterious effects are greater in regions subjected to I/R in mice lacking nNOS compared with normal mice, implying that NO produced by nNOS has protective effects that outweigh any damaging effect of this free radical produced by enteric neurons.
  • Item
    Thumbnail Image
    Expression of the ghrelin receptor gene in neurons of the medulla oblongata of the rat
    Bron, R ; Yin, L ; Russo, D ; Furness, JB (WILEY, 2013-08-15)
    There is ambiguity concerning the distribution of neurons that express the ghrelin receptor (GHSR) in the medulla oblongata. In the current study we used a sensitive nonradioactive method to investigate GHSR mRNA distribution by in situ hybridization. Strong expression of the GHSR gene was confirmed in neurons of the facial nucleus (FacN, 7), the dorsal vagal complex (DVC), and the semicompact (but not compact) nucleus ambiguus (AmbSC and AmbC). In addition, expression of GHSR was found in other regions, where it had not been described before. GHSR-positive neurons were observed in the gustatory rostral nucleus tractus solitarius and in areas involved in vestibulo-ocular processing (such as the medial vestibular nucleus and the nucleus abducens). GHSR expression was also noted in ventral areas associated with cardiorespiratory control, including the gigantocellular reticular nucleus, the lateral paragigantocellular nucleus, the rostral and caudal ventrolateral medulla, the (pre)-Bötzinger complex, and the rostral and caudal ventrolateral respiratory group. However, GHSR-positive neurons in ventrolateral areas did not express markers for cardiovascular presympathetic vasomotor neurons, respiratory propriobulbar rhythmogenic neurons, or sensory interneurons. GHSR-positive cells were intermingled with catecholamine neurons in the dorsal vagal complex but these populations did not overlap. Thus, the ghrelin receptor occurs in the medulla oblongata in 1) second-order sensory neurons processing gustatory, vestibulo-ocular, and visceral sensation; 2) cholinergic somatomotor neurons of the FacN and autonomic preganglionic neurons of the DMNX and AmbSC; 3) cardiovascular neurons in the DVC, Gi, and LPGi; 4) neurons of as yet unknown function in the ventrolateral medulla.