Anatomy and Neuroscience - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 5 of 5
  • Item
    Thumbnail Image
    Heterogeneity of enterochromaffin cells within the gastrointestinal tract
    Diwakarla, S ; Fothergill, LJ ; Fakhry, J ; Callaghan, B ; Furness, JB (WILEY, 2017-06)
    Enterochromaffin cells were the first endocrine cells of the gastrointestinal tract to be chemically distinguished, almost 150 years ago. It is now known that the chromaffin reaction of these cells was due to their content of the reactive aromatic amine, 5-hydroxytryptamine (5-HT, also known as serotonin). They have commonly been thought to be a special class of gut endocrine cells (enteroendocrine cells) that are distinct from the enteroendocrine cells that contain peptide hormones. The study by Martin et al. in the current issue of this journal reveals that the patterns of expression of nutrient receptors and transporters differ considerably between chromaffin cells of the mouse duodenum and colon. However, even within regions, chromaffin cells differ; in the duodenum there are chromaffin cells that contain both secretin and 5-HT, cholecystokinin and 5-HT, and all three of secretin, cholecystokinin, and 5-HT. Moreover, the ratios of these different cell types differ substantially between species. And, in terms of function, 5-HT has many roles, including in appetite, motility, fluid secretion, release of digestive enzymes and bone metabolism. The paper thus emphasizes the need to define the many different classes of enterochromaffin cells and relate this to their roles.
  • Item
    Thumbnail Image
    Distribution and characterisation of CCK containing enteroendocrine cells of the mouse small and large intestine
    Fakhry, J ; Wang, J ; Martins, P ; Fothergill, LJ ; Hunne, B ; Prieur, P ; Shulkes, A ; Rehfeld, JF ; Callaghan, B ; Furness, JB (SPRINGER, 2017-08)
    There is general consensus that enteroendocrine cells, EEC, containing the enteric hormone cholecystokinin (CCK) are confined to the small intestine and predominate in the duodenum and jejunum. Contrary to this, EEC that express the gene for CCK have been isolated from the large intestine of the mouse and there is evidence for EEC that contain CCK-like immunoreactivity in the mouse colon. However, the human and rat colons do not contain CCK cells. In the current study, we use immunohistochemistry to investigate CCK peptide presence in endocrine cells, PCR to identify cck transcripts and chromatography to identify CCK peptide forms in the mouse small and large intestine. The colocalisation of CCK and 5-HT, hormones that have been hypothesised to derive from cells of different lineages, was also investigated. CCK immunoreactivity was found in EEC throughout the mouse small and large intestine but positive cells were rare in the rectum. Immunoreactive EEC were as common in the caecum and proximal colon as they were in the duodenum and jejunum. CCK gene transcripts were found in the mucosa throughout the intestine but mRNA for gastrin, a hormone that can bind some anti-CCK antibodies, was only found in the stomach and duodenum. Characterisation of CCK peptides of the colon by extraction, chromatographic separation and radioimmunoassay revealed bioactive amidated and sulphated forms, including CCK-8 and CCK-33. Moreover, CCK-containing EEC in the large intestine bound antibodies that target the biologically active sulfated form. Colocalisation of CCK and 5-HT occurred in a proportion of EEC throughout the small intestine and in the caecum but these hormones were not colocalised in the colon, where there was CCK and PYY colocalisation. It is concluded that authentic, biologically active, CCK occurs in EEC of the mouse large intestine.
  • Item
    No Preview Available
    Quantitation and chemical coding of enteroendocrine cell populations in the human jejunum
    Coles, TEF ; Fothergill, LJ ; Hunne, B ; Nikfarjam, M ; Testro, A ; Callaghan, B ; McQuade, RM ; Furness, JB (SPRINGER, 2020-01)
    Recent studies reveal substantial species and regional differences in enteroendocrine cell (EEC) populations, including differences in patterns of hormone coexpression, which limit extrapolation between animal models and human. In this study, jejunal samples, with no histologically identifiable pathology, from patients undergoing Whipple's procedure were investigated for the presence of gastrointestinal hormones using double- and triple-labelling immunohistochemistry and high-resolution confocal microscopy. Ten hormones (5-HT, CCK, secretin, proglucagon-derived peptides, PYY, GIP, somatostatin, neurotensin, ghrelin and motilin) were localised in EEC of the human jejunum. If only single staining is considered, the most numerous EEC were those containing 5-HT, CCK, ghrelin, GIP, motilin, secretin and proglucagon-derived peptides. All hormones had some degree of colocalisation with other hormones. This included a population of EEC in which GIP, CCK and proglucagon-derived peptides are costored, and four 5-HT cell populations, 5-HT/GIP, 5-HT/ghrelin, 5-HT/PYY, and 5-HT/secretin cell groups, and a high degree of overlap between motilin and ghrelin. The presence of 5-HT in many secretin cells is consistent across species, whereas lack of 5-HT and CCK colocalisation distinguishes human from mouse. It seems likely that the different subclasses of 5-HT cells subserve different roles. At a subcellular level, we examined the vesicular localisation of secretin and 5-HT, and found these to be separately stored. We conclude that hormone-containing cells in the human jejunum do not comply with a one-cell, one-hormone classification and that colocalisations of hormones are likely to define subtypes of EEC that have different roles.
  • Item
    Thumbnail Image
    Analysis of enteroendocrine cell populations in the human colon
    Martins, P ; Fakhry, J ; de Oliveira, EC ; Hunne, B ; Fothergill, LJ ; Ringuet, M ; Reis, DD ; Rehfeld, JF ; Callaghan, B ; Furness, JB (SPRINGER, 2017-02)
    Recent studies have shown that patterns of colocalisation of hormones in enteroendocrine cells are more complex than previously appreciated and that the patterns differ substantially between species. In this study, the human sigmoid colon is investigated by immunohistochemistry for the presence of gastrointestinal hormones and their colocalisation. The segments of colon were distant from the pathology that led to colectomy and appeared structurally normal. Only four hormones, 5-hydroxytryptamine (5-HT), glucagon-like peptide 1 (GLP-1), peptide YY (PYY) and somatostatin, were common in enteroendocrine cells of the human colon. Cholecystokinin, present in the colon of some species, was absent, as were glucose-dependent insulinotropic peptide, ghrelin and motilin. Neurotensin cells were extremely rare. The most numerous cells were 5-HT cells, some of which also contained PYY or somatostatin and very rarely GLP-1. Almost all GLP-1 cells contained PYY. It is concluded that enteroendocrine cells of the human colon, like those of other regions and species, exhibit overlapping patterns of hormone colocalisation and that the hormones and their patterns of expression differ between human and other species.
  • Item
    Thumbnail Image
    Effects of Food Components That Activate TRPA1 Receptors on Mucosal Ion Transport in the Mouse Intestine
    Fothergill, LJ ; Callaghan, B ; Rivera, LR ; Lieu, T ; Poole, DP ; Cho, H-J ; Bravo, DM ; Furness, JB (MDPI AG, 2016-10)
    TRPA1 is a ligand-activated cation channel found in the intestine and other tissues. Components of food that stimulate TRPA1 receptors (phytonutrients) include allyl isothiocyanate, cinnamaldehyde and linalool, but these may also act at other receptors. Cells lining the intestinal mucosa are immunoreactive for TRPA1 and Trpa1 mRNA occurs in mucosal extracts, suggesting that the TRPA1 receptor is the target for these agonists. However, in situ hybridisation reveals Trpa1 expression in 5-HT containing enteroendocrine cells, not enterocytes. TRPA1 agonists evoke mucosal secretion, which may be indirect (through release of 5-HT) or direct by activation of enterocytes. We investigated effects of the phytonutrients on transmucosal ion currents in mouse duodenum and colon, and the specificity of the phytonutrients in cells transfected with Trpa1, and in Trpa1-deficient mice. The phytonutrients increased currents in the duodenum with the relative potencies: allyl isothiocyanate (AITC) > cinnamaldehyde > linalool (0.1 to 300 μM). The rank order was similar in the colon, but linalool was ineffective. Responses to AITC were reduced by the TRPA1 antagonist HC-030031 (100 μM), and were greatly diminished in Trpa1-/- duodenum and colon. Responses were not reduced by tetrodotoxin, 5-HT receptor antagonists, or atropine, but inhibition of prostaglandin synthesis reduced responses. Thus, functional TRPA1 channels are expressed by enterocytes of the duodenum and colon. Activation of enterocyte TRPA1 by food components has the potential to facilitate nutrient absorption.