Anatomy and Neuroscience - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 13
  • Item
    Thumbnail Image
    Heterogeneity of enterochromaffin cells within the gastrointestinal tract
    Diwakarla, S ; Fothergill, LJ ; Fakhry, J ; Callaghan, B ; Furness, JB (WILEY, 2017-06)
    Enterochromaffin cells were the first endocrine cells of the gastrointestinal tract to be chemically distinguished, almost 150 years ago. It is now known that the chromaffin reaction of these cells was due to their content of the reactive aromatic amine, 5-hydroxytryptamine (5-HT, also known as serotonin). They have commonly been thought to be a special class of gut endocrine cells (enteroendocrine cells) that are distinct from the enteroendocrine cells that contain peptide hormones. The study by Martin et al. in the current issue of this journal reveals that the patterns of expression of nutrient receptors and transporters differ considerably between chromaffin cells of the mouse duodenum and colon. However, even within regions, chromaffin cells differ; in the duodenum there are chromaffin cells that contain both secretin and 5-HT, cholecystokinin and 5-HT, and all three of secretin, cholecystokinin, and 5-HT. Moreover, the ratios of these different cell types differ substantially between species. And, in terms of function, 5-HT has many roles, including in appetite, motility, fluid secretion, release of digestive enzymes and bone metabolism. The paper thus emphasizes the need to define the many different classes of enterochromaffin cells and relate this to their roles.
  • Item
    Thumbnail Image
    Distribution and characterisation of CCK containing enteroendocrine cells of the mouse small and large intestine
    Fakhry, J ; Wang, J ; Martins, P ; Fothergill, LJ ; Hunne, B ; Prieur, P ; Shulkes, A ; Rehfeld, JF ; Callaghan, B ; Furness, JB (SPRINGER, 2017-08)
    There is general consensus that enteroendocrine cells, EEC, containing the enteric hormone cholecystokinin (CCK) are confined to the small intestine and predominate in the duodenum and jejunum. Contrary to this, EEC that express the gene for CCK have been isolated from the large intestine of the mouse and there is evidence for EEC that contain CCK-like immunoreactivity in the mouse colon. However, the human and rat colons do not contain CCK cells. In the current study, we use immunohistochemistry to investigate CCK peptide presence in endocrine cells, PCR to identify cck transcripts and chromatography to identify CCK peptide forms in the mouse small and large intestine. The colocalisation of CCK and 5-HT, hormones that have been hypothesised to derive from cells of different lineages, was also investigated. CCK immunoreactivity was found in EEC throughout the mouse small and large intestine but positive cells were rare in the rectum. Immunoreactive EEC were as common in the caecum and proximal colon as they were in the duodenum and jejunum. CCK gene transcripts were found in the mucosa throughout the intestine but mRNA for gastrin, a hormone that can bind some anti-CCK antibodies, was only found in the stomach and duodenum. Characterisation of CCK peptides of the colon by extraction, chromatographic separation and radioimmunoassay revealed bioactive amidated and sulphated forms, including CCK-8 and CCK-33. Moreover, CCK-containing EEC in the large intestine bound antibodies that target the biologically active sulfated form. Colocalisation of CCK and 5-HT occurred in a proportion of EEC throughout the small intestine and in the caecum but these hormones were not colocalised in the colon, where there was CCK and PYY colocalisation. It is concluded that authentic, biologically active, CCK occurs in EEC of the mouse large intestine.
  • Item
    Thumbnail Image
    Identification of enteroendocrine cells that express TRPA1 channels in the mouse intestine
    Cho, H-J ; Callaghan, B ; Bron, R ; Bravo, DM ; Furness, JB (SPRINGER, 2014-04)
    TRPA1 is an ion channel that detects specific chemicals in food and also transduces mechanical, cold and chemical stimulation. Its presence in sensory nerve endings is well known and recent evidence indicates that it is expressed by some gastrointestinal enteroendocrine cells (EEC). The purpose of the present work is to identify and quantify EEC that express TRPA1 in the mouse gastrointestinal tract. Combined in situ hybridisation histochemistry for TRPA1 and immunofluorescence for EEC hormones was used. TRPA1 expressing EEC were common in the duodenum and jejunum, were rare in the distal small intestine and were absent from the stomach and large intestine. In the duodenum and jejunum, TRPA1 occurred in EEC that contained both cholecystokinin (CCK) and 5-hydroxytryptamine (5HT) and in a small number of cells expressing 5HT but not CCK. TRPA1 was absent from CCK cells that did not express 5HT and from EEC containing glucagon-like insulinotropic peptide. Thus TRPA1 is contained in very specific EEC populations. It is suggested that foods such as garlic and cinnamon that contain TRPA1 stimulants may aid digestion by facilitating the release of CCK.
  • Item
    Thumbnail Image
    New Roles of Serotonin and Tachykinins in Intestinal Mucositis?
    Callaghan, B ; Furness, JB (SPRINGER, 2013-12)
  • Item
    Thumbnail Image
    Analysis of enteroendocrine cell populations in the human colon
    Martins, P ; Fakhry, J ; de Oliveira, EC ; Hunne, B ; Fothergill, LJ ; Ringuet, M ; Reis, DD ; Rehfeld, JF ; Callaghan, B ; Furness, JB (SPRINGER, 2017-02)
    Recent studies have shown that patterns of colocalisation of hormones in enteroendocrine cells are more complex than previously appreciated and that the patterns differ substantially between species. In this study, the human sigmoid colon is investigated by immunohistochemistry for the presence of gastrointestinal hormones and their colocalisation. The segments of colon were distant from the pathology that led to colectomy and appeared structurally normal. Only four hormones, 5-hydroxytryptamine (5-HT), glucagon-like peptide 1 (GLP-1), peptide YY (PYY) and somatostatin, were common in enteroendocrine cells of the human colon. Cholecystokinin, present in the colon of some species, was absent, as were glucose-dependent insulinotropic peptide, ghrelin and motilin. Neurotensin cells were extremely rare. The most numerous cells were 5-HT cells, some of which also contained PYY or somatostatin and very rarely GLP-1. Almost all GLP-1 cells contained PYY. It is concluded that enteroendocrine cells of the human colon, like those of other regions and species, exhibit overlapping patterns of hormone colocalisation and that the hormones and their patterns of expression differ between human and other species.
  • Item
    Thumbnail Image
    Evidence that central pathways that mediate defecation utilize ghrelin receptors but do not require endogenous ghrelin
    Pustovit, RV ; Callaghan, B ; Ringuet, MT ; Kerr, NF ; Hunne, B ; Smyth, IM ; Pietra, C ; Furness, JB (WILEY, 2017-08)
    In laboratory animals and in human, centrally penetrant ghrelin receptor agonists, given systemically or orally, cause defecation. Animal studies show that the effect is due to activation of ghrelin receptors in the spinal lumbosacral defecation centers. However, it is not known whether there is a physiological role of ghrelin or the ghrelin receptor in the control of defecation. Using immunohistochemistry and immunoassay, we detected and measured ghrelin in the stomach, but were unable to detect ghrelin by either method in the lumbosacral spinal cord, or other regions of the CNS In rats in which the thoracic spinal cord was transected 5 weeks before, the effects of a ghrelin agonist on colorectal propulsion were significantly enhanced, but defecation caused by water avoidance stress (WAS) was reduced. In knockout rats that expressed no ghrelin and in wild-type rats, WAS-induced defecation was reduced by a ghrelin receptor antagonist, to similar extents. We conclude that the ghrelin receptors of the lumbosacral defecation centers have a physiological role in the control of defecation, but that their role is not dependent on ghrelin. This implies that a transmitter other than ghrelin engages the ghrelin receptor or a ghrelin receptor complex.
  • Item
    Thumbnail Image
    Effects of Food Components That Activate TRPA1 Receptors on Mucosal Ion Transport in the Mouse Intestine
    Fothergill, LJ ; Callaghan, B ; Rivera, LR ; Lieu, T ; Poole, DP ; Cho, H-J ; Bravo, DM ; Furness, JB (MDPI AG, 2016-10)
    TRPA1 is a ligand-activated cation channel found in the intestine and other tissues. Components of food that stimulate TRPA1 receptors (phytonutrients) include allyl isothiocyanate, cinnamaldehyde and linalool, but these may also act at other receptors. Cells lining the intestinal mucosa are immunoreactive for TRPA1 and Trpa1 mRNA occurs in mucosal extracts, suggesting that the TRPA1 receptor is the target for these agonists. However, in situ hybridisation reveals Trpa1 expression in 5-HT containing enteroendocrine cells, not enterocytes. TRPA1 agonists evoke mucosal secretion, which may be indirect (through release of 5-HT) or direct by activation of enterocytes. We investigated effects of the phytonutrients on transmucosal ion currents in mouse duodenum and colon, and the specificity of the phytonutrients in cells transfected with Trpa1, and in Trpa1-deficient mice. The phytonutrients increased currents in the duodenum with the relative potencies: allyl isothiocyanate (AITC) > cinnamaldehyde > linalool (0.1 to 300 μM). The rank order was similar in the colon, but linalool was ineffective. Responses to AITC were reduced by the TRPA1 antagonist HC-030031 (100 μM), and were greatly diminished in Trpa1-/- duodenum and colon. Responses were not reduced by tetrodotoxin, 5-HT receptor antagonists, or atropine, but inhibition of prostaglandin synthesis reduced responses. Thus, functional TRPA1 channels are expressed by enterocytes of the duodenum and colon. Activation of enterocyte TRPA1 by food components has the potential to facilitate nutrient absorption.
  • Item
    Thumbnail Image
    The gut as a sensory organ
    Furness, JB ; Rivera, LR ; Cho, H-J ; Bravo, DM ; Callaghan, B (NATURE PUBLISHING GROUP, 2013-12)
    The gastrointestinal tract presents the largest and most vulnerable surface to the outside world. Simultaneously, it must be accessible and permeable to nutrients and must defend against pathogens and potentially injurious chemicals. Integrated responses to these challenges require the gut to sense its environment, which it does through a range of detection systems for specific chemical entities, pathogenic organisms and their products (including toxins), as well as physicochemical properties of its contents. Sensory information is then communicated to four major effector systems: the enteroendocrine hormonal signalling system; the innervation of the gut, both intrinsic and extrinsic; the gut immune system; and the local tissue defence system. Extensive endocrine-neuro-immune-organ-defence interactions are demonstrable, but under-investigated. A major challenge is to develop a comprehensive understanding of the integrated responses of the gut to the sensory information it receives. A major therapeutic opportunity exists to develop agents that target the receptors facing the gut lumen.
  • Item
    Thumbnail Image
    Novel and Conventional Receptors for Ghrelin, Desacyl-Ghrelin, and Pharmacologically Related Compounds
    Callaghan, B ; Furness, JB ; Christopoulos, A (AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS, 2014-10)
    The only molecularly identified ghrelin receptor is the growth hormone secretagogue receptor GHSR1a. Its natural ligand, ghrelin, is an acylated peptide whose unacylated counterpart (UAG) is almost inactive at GHSR1a. A truncated, nonfunctional receptor, GHSR1b, derives from the same gene. We have critically evaluated evidence for effects of ghrelin receptor ligands that are not consistent with actions at GHSR1a. Effects of ghrelin are observed in cells or tissues where the expression of GHSR1a is not detectable or after the Ghsr gene has been inactivated. In several, effects of ghrelin are mimicked by UAG, and ghrelin binding is competitively reduced by UAG. Effects in the absence of GHSR1a and sites at which ghrelin and UAG have similar potency suggest the presence of novel nonspecific ghrelin receptors (ghrelin receptor-like receptors [GRLRs]). A third class of receptor, the UAG receptors, at which UAG, but not ghrelin, is an agonist has been proposed. None of the novel receptors, with the exception of the glycoprotein CD36, which accounts for ghrelin action at a limited number of sites, have been identified. GHSR1a and GHSR1b combine with other G protein-coupled receptors to form heterodimers, whose pharmacologies differ from their components. Thus, it is feasible some GRLRs and some UAG receptors are heterodimers. Effects mediated through GRLRs or UAG receptors include adipocyte lipid accumulation, myoblast differentiation, osteoblast proliferation, insulin release, cardioprotection, coronary artery constriction, vascular endothelial cell proliferation, and tumor cell proliferation. The molecular identification and pharmacologic characterization of novel ghrelin receptors are thus important objectives.
  • Item
    Thumbnail Image
    Ghrelin and des-acyl ghrelin inhibit aromatase expression and activity in human adipose stromal cells: suppression of cAMP as a possible mechanism
    Docanto, MM ; Yang, F ; Callaghan, B ; Au, CC ; Ragavan, R ; Wang, X ; Furness, JB ; Andrews, ZB ; Brown, KA (SPRINGER, 2014-08)
    Aromatase converts androgens into estrogens and its expression within adipose stromal cells (ASCs) is believed to be the major driver of estrogen-dependent cancers in older women. Ghrelin is a gut-hormone that is involved in the regulation of appetite and known to bind to and activate the cognate ghrelin receptor, GHSR1a. The unacylated form of ghrelin, des-acyl ghrelin, binds weakly to GHSR1a but has been shown to play an important role in regulating a number of physiological processes. The aim of this study was to determine the effect of ghrelin and des-acyl ghrelin on aromatase in primary human ASCs. Primary human ASCs were isolated from adipose tissue of women undergoing cosmetic surgery. Real-time PCR and tritiated water-release assays were performed to examine the effect of treatment on aromatase transcript expression and aromatase activity, respectively. Treatments included ghrelin, des-acyl ghrelin, obestatin, and capromorelin (GHSR1a agonist). GHSR1a protein expression was assessed by Western blot and effects of treatment on Ca(2+) and cAMP second messenger systems were examined using the Flexstation assay and the Lance Ultra cAMP kit, respectively. Results demonstrate that pM concentrations of ghrelin and des-acyl ghrelin inhibit aromatase transcript expression and activity in ASCs under basal conditions and in PGE2-stimulated cells. Moreover, the effects of ghrelin and des-acyl ghrelin are mediated via effects on aromatase promoter PII-specific transcripts. Neither the GHSR1a-specific agonist capromorelin nor obestatin had any effect on aromatase transcript expression or activity. Moreover, GHSR1a protein was undetectable by Western blot and neither ghrelin nor capromorelin elicited a calcium response in ASCs. Finally, ghrelin caused a significant decrease in basal and forskolin-stimulated cAMP in ASC. These findings suggest that ghrelin acts at alternate receptors in ASCs by decreasing intracellular cAMP levels. Ghrelin mimetics may be useful in the treatment of estrogen-dependent breast cancer.