Anatomy and Neuroscience - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 6 of 6
  • Item
    Thumbnail Image
    The TAM Receptor Tyro3 Regulates Myelination in the Central Nervous System
    Akkermann, R ; Aprico, A ; Perera, AA ; Bujalka, H ; Cole, AE ; Xiao, J ; Field, J ; Kilpatrick, TJ ; Binder, MD (WILEY, 2017-04)
    Myelin is an essential component of the mammalian nervous system, facilitating rapid conduction of electrical impulses by axons, as well as providing trophic support to neurons. Within the central nervous system, the oligodendrocyte is the specialized neural cell responsible for producing myelin by a process that is thought to be regulated by both activity dependent and independent mechanisms but in incompletely understood ways. We have previously identified that the protein Gas6, a ligand for a family of tyrosine kinase receptors known as the TAM (Tyro3, Axl, and Mertk) receptors, directly increases oligodendrocyte induced myelination in vitro. Gas6 can bind to and activate all three TAM receptors, but the high level of expression of Tyro3 on oligodendrocytes makes this receptor the principal candidate for transducing the pro-myelinating effect of Gas6. In this study, we establish that in the absence of Tyro3, the pro-myelinating effect of Gas6 is lost, that developmental myelination is delayed and that the myelin produced is thinner than normal. We show that this effect is specific to the myelination process and not due to changes in the proliferation or differentiation of oligodendrocyte precursor cells. We have further demonstrated that the reduction in myelination is due to the loss of Tyro3 on oligodendrocytes, and this effect may be mediated by activation of Erk1. Collectively, our findings indicate the critical importance of Tyro3 in potentiating central nervous system myelination. GLIA 2017 GLIA 2017;65:581-591.
  • Item
    Thumbnail Image
    The TAM receptor TYRO3 is a critical regulator of myelin thickness in the central nervous system
    Blades, F ; Aprico, A ; Akkermann, R ; Ellis, S ; Binder, MD ; Kilpatrick, TJ (WILEY, 2018-10)
    Multiple sclerosis (MS) is an autoimmune, demyelinating disease of the central nervous system (CNS). Major deficits arise in MS patients due to an inability to repair damaged myelin sheaths following CNS insult, resulting in prolonged axonal exposure and neurodegeneration. The TAM receptors (Tyro3, Axl, and Mertk) have been implicated in MS susceptibility, demyelination and remyelination. Previously, we have shown that Tyro3 regulates developmental myelination and myelin thickness within the optic nerve and rostral region of the corpus callosum (CC) of adult mice. In this study we have verified and extended our previous findings via a comprehensive analysis of axonal ensheathment and myelin thickness in the CC of unchallenged mice, following demyelination and during myelin repair. We show that the loss of the Tyro3 receptor correlates with significantly thinner myelin sheaths in both unchallenged mice and during remyelination, particularly in larger caliber axons. The hypomyelinated phenotype observed in the absence of Tyro3 occurs independently of any influence upon oligodendrocyte precursor cell (OPC) maturation, or density of oligodendrocytes (OLs) or microglia. Rather, the primary effect of Tyro3 is upon the radial expansion of myelin. The loss of Tyro3 leads to a reduction in the number of myelin lamellae on axons, and is therefore most likely a key component of the regulatory mechanism by which oligodendrocytes match myelin production to axonal diameter.
  • Item
    Thumbnail Image
    Gas6 Increases Myelination by Oligodendrocytes and Its Deficiency Delays Recovery following Cuprizone-Induced Demyelination
    Binder, MD ; Xiao, J ; Kemper, D ; Ma, GZM ; Murray, SS ; Kilpatrick, TJ ; Guillemin, G (PUBLIC LIBRARY SCIENCE, 2011-03-10)
    Multiple sclerosis (MS) is a complex demyelinating disease of the central nervous system. Current research has shown that at least in some cases, the primary insult in MS could be directed at the oligodendrocyte, and that the earliest immune responses are primarily via innate immune cells. We have identified a family of receptor protein tyrosine kinases, known as the TAM receptors (Tyro3, Axl and Mertk), as potentially important in regulating both the oligodendrocyte and immune responses. We have previously shown that Gas6, a ligand for the TAM receptors, can affect the severity of demyelination in mice, with a loss of signalling via Gas6 leading to decreased oligodendrocyte survival and increased microglial activation during cuprizone-induced demyelination. We hypothesised TAM receptor signalling would also influence the extent of recovery in mice following demyelination. A significant effect of the absence of Gas6 was detected upon remyelination, with a lower level of myelination after 4 weeks of recovery in comparison with wild-type mice. The delay in remyelination was accompanied by a reduction in oligodendrocyte numbers. To understand the molecular mechanisms that drive the observed effects, we also examined the effect of exogenous Gas6 in in vitro myelination assays. We found that Gas6 significantly increased myelination in a dose-dependent manner, suggesting that TAM receptor signalling could be directly involved in myelination by oligodendrocytes. The reduced rate of remyelination in the absence of Gas6 could thus result from a lack of Gas6 at a critical time during myelin production after injury. These findings establish Gas6 as an important regulator of both CNS demyelination and remyelination.
  • Item
    Thumbnail Image
    Common and Low Frequency Variants in MERTK Are Independently Associated with Multiple Sclerosis Susceptibility with Discordant Association Dependent upon HLA-DRB1*15:01 Status
    Binder, MD ; Fox, AD ; Merlo, D ; Johnson, LJ ; Giuffrida, L ; Calvert, SE ; Akkermann, R ; Ma, GZM ; Perera, AA ; Gresle, MM ; Laverick, L ; Foo, G ; Fabis-Pedrini, MJ ; Spelman, T ; Jordan, MA ; Baxter, AG ; Foote, S ; Butzkueven, H ; Kilpatrick, TJ ; Field, J ; Gibson, G (PUBLIC LIBRARY SCIENCE, 2016-03)
    Multiple Sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system. The risk of developing MS is strongly influenced by genetic predisposition, and over 100 loci have been established as associated with susceptibility. However, the biologically relevant variants underlying disease risk have not been defined for the vast majority of these loci, limiting the power of these genetic studies to define new avenues of research for the development of MS therapeutics. It is therefore crucial that candidate MS susceptibility loci are carefully investigated to identify the biological mechanism linking genetic polymorphism at a given gene to the increased chance of developing MS. MERTK has been established as an MS susceptibility gene and is part of a family of receptor tyrosine kinases known to be involved in the pathogenesis of demyelinating disease. In this study we have refined the association of MERTK with MS risk to independent signals from both common and low frequency variants. One of the associated variants was also found to be linked with increased expression of MERTK in monocytes and higher expression of MERTK was associated with either increased or decreased risk of developing MS, dependent upon HLA-DRB1*15:01 status. This discordant association potentially extended beyond MS susceptibility to alterations in disease course in established MS. This study provides clear evidence that distinct polymorphisms within MERTK are associated with MS susceptibility, one of which has the potential to alter MERTK transcription, which in turn can alter both susceptibility and disease course in MS patients.
  • Item
    Thumbnail Image
    Polymorphisms in the Receptor Tyrosine Kinase MERTK Gene Are Associated with Multiple Sclerosis Susceptibility
    Ma, GZM ; Stankovich, J ; Kilpatrick, TJ ; Binder, MD ; Field, J ; Krahe, R (PUBLIC LIBRARY SCIENCE, 2011-02-08)
    Multiple sclerosis (MS) is a debilitating, chronic demyelinating disease of the central nervous system affecting over 2 million people worldwide. The TAM family of receptor tyrosine kinases (TYRO3, AXL and MERTK) have been implicated as important players during demyelination in both animal models of MS and in the human disease. We therefore conducted an association study to identify single nucleotide polymorphisms (SNPs) within genes encoding the TAM receptors and their ligands associated with MS. Analysis of genotype data from a genome-wide association study which consisted of 1618 MS cases and 3413 healthy controls conducted by the Australia and New Zealand Multiple Sclerosis Genetics Consortium (ANZgene) revealed several SNPs within the MERTK gene (Chromosome 2q14.1, Accession Number NG_011607.1) that showed suggestive association with MS. We therefore interrogated 28 SNPs in MERTK in an independent replication cohort of 1140 MS cases and 1140 healthy controls. We found 12 SNPs that replicated, with 7 SNPs showing p-values of less than 10(-5) when the discovery and replication cohorts were combined. All 12 replicated SNPs were in strong linkage disequilibrium with each other. In combination, these data suggest the MERTK gene is a novel risk gene for MS susceptibility.
  • Item
    Thumbnail Image
    Association of plasma levels of Protein S with disease severity in multiple sclerosis
    Gresle, ; Laverick, ; Butzkueven, ; Field, ; Kilpatrick, (Sage Publications, 2015)
    The TAM family of receptor tyrosine kinases (TYRO3, AXL and MERTK) play important roles in modulating innate immune responses and central demyelination. The TAM receptor ligand Protein S (PROS) has also been shown to modulate innate immune cell responses.We assessed whether plasma levels of PROS are changed in multiple sclerosis (MS) patients and whether changes are associated with disease severity.Plasma levels of total and free PROS were measured using enzyme-linked immunosorbent assay in a discovery cohort (MS: 65, control: 14) and an independent replication cohort (MS: 29, control: 29). The Multiple Sclerosis Severity Score (MSSS) was used to evaluate associations between plasma PROS levels and disease severity.We found plasma levels of total, but not free PROS, were decreased in MS patients compared with controls. In female MS patients, we observed decreases in total and free PROS levels compared with controls. In addition, we also observed higher MSSS in patients with very low levels of plasma free PROS.These data suggest PROS may represent a potential marker of disease severity in MS.