Anatomy and Neuroscience - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 24
  • Item
    Thumbnail Image
    The TAM Receptor Tyro3 Regulates Myelination in the Central Nervous System
    Akkermann, R ; Aprico, A ; Perera, AA ; Bujalka, H ; Cole, AE ; Xiao, J ; Field, J ; Kilpatrick, TJ ; Binder, MD (WILEY, 2017-04-01)
    Myelin is an essential component of the mammalian nervous system, facilitating rapid conduction of electrical impulses by axons, as well as providing trophic support to neurons. Within the central nervous system, the oligodendrocyte is the specialized neural cell responsible for producing myelin by a process that is thought to be regulated by both activity dependent and independent mechanisms but in incompletely understood ways. We have previously identified that the protein Gas6, a ligand for a family of tyrosine kinase receptors known as the TAM (Tyro3, Axl, and Mertk) receptors, directly increases oligodendrocyte induced myelination in vitro. Gas6 can bind to and activate all three TAM receptors, but the high level of expression of Tyro3 on oligodendrocytes makes this receptor the principal candidate for transducing the pro-myelinating effect of Gas6. In this study, we establish that in the absence of Tyro3, the pro-myelinating effect of Gas6 is lost, that developmental myelination is delayed and that the myelin produced is thinner than normal. We show that this effect is specific to the myelination process and not due to changes in the proliferation or differentiation of oligodendrocyte precursor cells. We have further demonstrated that the reduction in myelination is due to the loss of Tyro3 on oligodendrocytes, and this effect may be mediated by activation of Erk1. Collectively, our findings indicate the critical importance of Tyro3 in potentiating central nervous system myelination. GLIA 2017 GLIA 2017;65:581-591.
  • Item
    No Preview Available
    Fine-Mapping the Genetic Association of the Major Histocompatibility Complex in Multiple Sclerosis: HLA and Non-HLA Effects
    Patsopoulos, NA ; Barcellos, LF ; Hintzen, RQ ; Schaefer, C ; Van Duijn, CM ; Noble, JA ; Raj, T ; Gourraud, P-A ; Stranger, BE ; Oksenberg, J ; Olsson, T ; Taylor, BV ; Sawcer, S ; Hafler, DA ; Carrington, M ; De Jager, PL ; De Bakker, PIW ; Gibson, G (PUBLIC LIBRARY SCIENCE, 2013-11-01)
    The major histocompatibility complex (MHC) region is strongly associated with multiple sclerosis (MS) susceptibility. HLA-DRB1*15:01 has the strongest effect, and several other alleles have been reported at different levels of validation. Using SNP data from genome-wide studies, we imputed and tested classical alleles and amino acid polymorphisms in 8 classical human leukocyte antigen (HLA) genes in 5,091 cases and 9,595 controls. We identified 11 statistically independent effects overall: 6 HLA-DRB1 and one DPB1 alleles in class II, one HLA-A and two B alleles in class I, and one signal in a region spanning from MICB to LST1. This genomic segment does not contain any HLA class I or II genes and provides robust evidence for the involvement of a non-HLA risk allele within the MHC. Interestingly, this region contains the TNF gene, the cognate ligand of the well-validated TNFRSF1A MS susceptibility gene. The classical HLA effects can be explained to some extent by polymorphic amino acid positions in the peptide-binding grooves. This study dissects the independent effects in the MHC, a critical region for MS susceptibility that harbors multiple risk alleles.
  • Item
    Thumbnail Image
    Identity-by-Descent Mapping to Detect Rare Variants Conferring Susceptibility to Multiple Sclerosis
    Lin, R ; Charlesworth, J ; Stankovich, J ; Perreau, VM ; Brown, MA ; Taylor, BV ; Toland, AE (PUBLIC LIBRARY SCIENCE, 2013-03-05)
    Genome-wide association studies (GWAS) have identified around 60 common variants associated with multiple sclerosis (MS), but these loci only explain a fraction of the heritability of MS. Some missing heritability may be caused by rare variants that have been suggested to play an important role in the aetiology of complex diseases such as MS. However current genetic and statistical methods for detecting rare variants are expensive and time consuming. 'Population-based linkage analysis' (PBLA) or so called identity-by-descent (IBD) mapping is a novel way to detect rare variants in extant GWAS datasets. We employed BEAGLE fastIBD to search for rare MS variants utilising IBD mapping in a large GWAS dataset of 3,543 cases and 5,898 controls. We identified a genome-wide significant linkage signal on chromosome 19 (LOD = 4.65; p = 1.9×10(-6)). Network analysis of cases and controls sharing haplotypes on chromosome 19 further strengthened the association as there are more large networks of cases sharing haplotypes than controls. This linkage region includes a cluster of zinc finger genes of unknown function. Analysis of genome wide transcriptome data suggests that genes in this zinc finger cluster may be involved in very early developmental regulation of the CNS. Our study also indicates that BEAGLE fastIBD allowed identification of rare variants in large unrelated population with moderate computational intensity. Even with the development of whole-genome sequencing, IBD mapping still may be a promising way to narrow down the region of interest for sequencing priority.
  • Item
    Thumbnail Image
    MicroRNAs miR-17 and miR-20a Inhibit T Cell Activation Genes and Are Under-Expressed in MS Whole Blood
    Cox, MB ; Cairns, MJ ; Gandhi, KS ; Carroll, AP ; Moscovis, S ; Stewart, GJ ; Broadley, S ; Scott, RJ ; Booth, DR ; Lechner-Scott, J ; Jacobson, S (PUBLIC LIBRARY SCIENCE, 2010-08-11)
    It is well established that Multiple Sclerosis (MS) is an immune mediated disease. Little is known about what drives the differential control of the immune system in MS patients compared to unaffected individuals. MicroRNAs (miRNAs) are small non-coding nucleic acids that are involved in the control of gene expression. Their potential role in T cell activation and neurodegenerative disease has recently been recognised and they are therefore excellent candidates for further studies in MS. We investigated the transcriptome of currently known miRNAs using miRNA microarray analysis in peripheral blood samples of 59 treatment naïve MS patients and 37 controls. Of these 59, 18 had a primary progressive, 17 a secondary progressive and 24 a relapsing remitting disease course. In all MS subtypes miR-17 and miR-20a were significantly under-expressed in MS, confirmed by RT-PCR. We demonstrate that these miRNAs modulate T cell activation genes in a knock-in and knock-down T cell model. The same T cell activation genes are also up-regulated in MS whole blood mRNA, suggesting these miRNAs or their analogues may provide useful targets for new therapeutic approaches.
  • Item
    Thumbnail Image
    Modeling the cumulative genetic risk for multiple sclerosis from genome-wide association data
    Wang, JH ; Pappas, D ; De Jager, PL ; Pelletier, D ; de Bakker, PIW ; Kappos, L ; Polman, CH ; Chibnik, LB ; Hafler, DA ; Matthews, PM ; Hauser, SL ; Baranzini, SE ; Oksenberg, JR (BMC, 2011-01-01)
    BACKGROUND: Multiple sclerosis (MS) is the most common cause of chronic neurologic disability beginning in early to middle adult life. Results from recent genome-wide association studies (GWAS) have substantially lengthened the list of disease loci and provide convincing evidence supporting a multifactorial and polygenic model of inheritance. Nevertheless, the knowledge of MS genetics remains incomplete, with many risk alleles still to be revealed. METHODS: We used a discovery GWAS dataset (8,844 samples, 2,124 cases and 6,720 controls) and a multi-step logistic regression protocol to identify novel genetic associations. The emerging genetic profile included 350 independent markers and was used to calculate and estimate the cumulative genetic risk in an independent validation dataset (3,606 samples). Analysis of covariance (ANCOVA) was implemented to compare clinical characteristics of individuals with various degrees of genetic risk. Gene ontology and pathway enrichment analysis was done using the DAVID functional annotation tool, the GO Tree Machine, and the Pathway-Express profiling tool. RESULTS: In the discovery dataset, the median cumulative genetic risk (P-Hat) was 0.903 and 0.007 in the case and control groups, respectively, together with 79.9% classification sensitivity and 95.8% specificity. The identified profile shows a significant enrichment of genes involved in the immune response, cell adhesion, cell communication/signaling, nervous system development, and neuronal signaling, including ionotropic glutamate receptors, which have been implicated in the pathological mechanism driving neurodegeneration. In the validation dataset, the median cumulative genetic risk was 0.59 and 0.32 in the case and control groups, respectively, with classification sensitivity 62.3% and specificity 75.9%. No differences in disease progression or T2-lesion volumes were observed among four levels of predicted genetic risk groups (high, medium, low, misclassified). On the other hand, a significant difference (F = 2.75, P = 0.04) was detected for age of disease onset between the affected misclassified as controls (mean = 36 years) and the other three groups (high, 33.5 years; medium, 33.4 years; low, 33.1 years). CONCLUSIONS: The results are consistent with the polygenic model of inheritance. The cumulative genetic risk established using currently available genome-wide association data provides important insights into disease heterogeneity and completeness of current knowledge in MS genetics.
  • Item
    Thumbnail Image
    A Transcription Factor Map as Revealed by a Genome-Wide Gene Expression Analysis of Whole-Blood mRNA Transcriptome in Multiple Sclerosis
    Riveros, C ; Mellor, D ; Gandhi, KS ; McKay, FC ; Cox, MB ; Berretta, R ; Vaezpour, SY ; Inostroza-Ponta, M ; Broadley, SA ; Heard, RN ; Vucic, S ; Stewart, GJ ; Williams, DW ; Scott, RJ ; Lechner-Scott, J ; Booth, DR ; Moscato, P ; Rattray, M (PUBLIC LIBRARY SCIENCE, 2010-12-01)
    BACKGROUND: Several lines of evidence suggest that transcription factors are involved in the pathogenesis of Multiple Sclerosis (MS) but complete mapping of the whole network has been elusive. One of the reasons is that there are several clinical subtypes of MS and transcription factors that may be involved in one subtype may not be in others. We investigate the possibility that this network could be mapped using microarray technologies and contemporary bioinformatics methods on a dataset derived from whole blood in 99 untreated MS patients (36 Relapse Remitting MS, 43 Primary Progressive MS, and 20 Secondary Progressive MS) and 45 age-matched healthy controls. METHODOLOGY/PRINCIPAL FINDINGS: We have used two different analytical methodologies: a non-standard differential expression analysis and a differential co-expression analysis, which have converged on a significant number of regulatory motifs that are statistically overrepresented in genes that are either differentially expressed (or differentially co-expressed) in cases and controls (e.g., V$KROX_Q6, p-value <3.31E-6; V$CREBP1_Q2, p-value <9.93E-6, V$YY1_02, p-value <1.65E-5). CONCLUSIONS/SIGNIFICANCE: Our analysis uncovered a network of transcription factors that potentially dysregulate several genes in MS or one or more of its disease subtypes. The most significant transcription factor motifs were for the Early Growth Response EGR/KROX family, ATF2, YY1 (Yin and Yang 1), E2F-1/DP-1 and E2F-4/DP-2 heterodimers, SOX5, and CREB and ATF families. These transcription factors are involved in early T-lymphocyte specification and commitment as well as in oligodendrocyte dedifferentiation and development, both pathways that have significant biological plausibility in MS causation.
  • Item
    Thumbnail Image
    Common and Low Frequency Variants in MERTK Are Independently Associated with Multiple Sclerosis Susceptibility with Discordant Association Dependent upon HLA-DRB1*15:01 Status
    Binder, MD ; Fox, AD ; Merlo, D ; Johnson, LJ ; Giuffrida, L ; Calvert, SE ; Akkermann, R ; Ma, GZM ; Perera, AA ; Gresle, MM ; Laverick, L ; Foo, G ; Fabis-Pedrini, MJ ; Spelman, T ; Jordan, MA ; Baxter, AG ; Foote, S ; Butzkueven, H ; Kilpatrick, TJ ; Field, J ; Gibson, G (PUBLIC LIBRARY SCIENCE, 2016-03-01)
    Multiple Sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system. The risk of developing MS is strongly influenced by genetic predisposition, and over 100 loci have been established as associated with susceptibility. However, the biologically relevant variants underlying disease risk have not been defined for the vast majority of these loci, limiting the power of these genetic studies to define new avenues of research for the development of MS therapeutics. It is therefore crucial that candidate MS susceptibility loci are carefully investigated to identify the biological mechanism linking genetic polymorphism at a given gene to the increased chance of developing MS. MERTK has been established as an MS susceptibility gene and is part of a family of receptor tyrosine kinases known to be involved in the pathogenesis of demyelinating disease. In this study we have refined the association of MERTK with MS risk to independent signals from both common and low frequency variants. One of the associated variants was also found to be linked with increased expression of MERTK in monocytes and higher expression of MERTK was associated with either increased or decreased risk of developing MS, dependent upon HLA-DRB1*15:01 status. This discordant association potentially extended beyond MS susceptibility to alterations in disease course in established MS. This study provides clear evidence that distinct polymorphisms within MERTK are associated with MS susceptibility, one of which has the potential to alter MERTK transcription, which in turn can alter both susceptibility and disease course in MS patients.
  • Item
    Thumbnail Image
    Variants of ST8SIA1 Are Associated with Risk of Developing Multiple Sclerosis
    Husain, S ; Yildirim-Toruner, C ; Rubio, JP ; Field, J ; Schwalb, M ; Cook, S ; Devoto, M ; Vitale, E ; Reitsma, PH (PUBLIC LIBRARY SCIENCE, 2008-07-09)
    Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system of unknown etiology with both genetic and environmental factors playing a role in susceptibility. To date, the HLA DR15/DQ6 haplotype within the major histocompatibility complex on chromosome 6p, is the strongest genetic risk factor associated with MS susceptibility. Additional alleles of IL7 and IL2 have been identified as risk factors for MS with small effect. Here we present two independent studies supporting an allelic association of MS with polymorphisms in the ST8SIA1 gene, located on chromosome 12p12 and encoding ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 1. The initial association was made in a single three-generation family where a single-nucleotide polymorphism (SNP) rs4762896, was segregating together with HLA DR15/DQ6 in MS patients. A study of 274 family trios (affected child and both unaffected parents) from Australia validated the association of ST8SIA1 in individuals with MS, showing transmission disequilibrium of the paternal alleles for three additional SNPs, namely rs704219, rs2041906, and rs1558793, with p = 0.001, p = 0.01 and p = 0.01 respectively. These findings implicate ST8SIA1 as a possible novel susceptibility gene for MS.
  • Item
    Thumbnail Image
    Closing the case of APOE in multiple sclerosis: no association with disease risk in over 29 000 subjects
    Lill, CM ; Liu, T ; Schjeide, B-MM ; Roehr, JT ; Akkad, DA ; Damotte, V ; Alcina, A ; Ortiz, MA ; Arroyo, R ; Lopez de lapuente, A ; Blaschke, P ; Winkelmann, A ; Gerdes, L-A ; Luessi, F ; Fernadez, O ; Izquierdo, G ; Antigueedad, A ; Hoffjan, S ; Cournu-Rebeix, I ; Gromoeller, S ; Faber, H ; Liebsch, M ; Meissner, E ; Chanvillard, C ; Touze, E ; Pico, F ; Corcia, P ; Doerner, T ; Steinhagen-Thiessen, E ; Baeckman, L ; Heekeren, HR ; Li, S-C ; Lindenberger, U ; Chan, A ; Hartung, H-P ; Aktas, O ; Lohse, P ; Kuempfel, T ; Kubisch, C ; Epplen, JT ; Zettl, UK ; Fontaine, B ; Vandenbroeck, K ; Matesanz, F ; Urcelay, E ; Bertram, L ; Zipp, F (BMJ PUBLISHING GROUP, 2012-09-01)
    BACKGROUND: Single nucleotide polymorphisms (SNPs) rs429358 (ε4) and rs7412 (ε2), both invoking changes in the amino-acid sequence of the apolipoprotein E (APOE) gene, have previously been tested for association with multiple sclerosis (MS) risk. However, none of these studies was sufficiently powered to detect modest effect sizes at acceptable type-I error rates. As both SNPs are only imperfectly captured on commonly used microarray genotyping platforms, their evaluation in the context of genome-wide association studies has been hindered until recently. METHODS: We genotyped 12 740 subjects hitherto not studied for their APOE status, imputed raw genotype data from 8739 subjects from five independent genome-wide association studies datasets using the most recent high-resolution reference panels, and extracted genotype data for 8265 subjects from previous candidate gene assessments. RESULTS: Despite sufficient power to detect associations at genome-wide significance thresholds across a range of ORs, our analyses did not support a role of rs429358 or rs7412 on MS susceptibility. This included meta-analyses of the combined data across 13 913 MS cases and 15 831 controls (OR=0.95, p=0.259, and OR 1.07, p=0.0569, for rs429358 and rs7412, respectively). CONCLUSION: Given the large sample size of our analyses, it is unlikely that the two APOE missense SNPs studied here exert any relevant effects on MS susceptibility.
  • Item
    Thumbnail Image
    Estimation and partitioning of polygenic variation captured by common SNPs for Alzheimer's disease, multiple sclerosis and endometriosis
    Lee, SH ; Harold, D ; Nyholt, DR ; Goddard, ME ; Zondervan, KT ; Williams, J ; Montgomery, GW ; Wray, NR ; Visscher, PM (OXFORD UNIV PRESS, 2013-02-15)
    Common diseases such as endometriosis (ED), Alzheimer's disease (AD) and multiple sclerosis (MS) account for a significant proportion of the health care burden in many countries. Genome-wide association studies (GWASs) for these diseases have identified a number of individual genetic variants contributing to the risk of those diseases. However, the effect size for most variants is small and collectively the known variants explain only a small proportion of the estimated heritability. We used a linear mixed model to fit all single nucleotide polymorphisms (SNPs) simultaneously, and estimated genetic variances on the liability scale using SNPs from GWASs in unrelated individuals for these three diseases. For each of the three diseases, case and control samples were not all genotyped in the same laboratory. We demonstrate that a careful analysis can obtain robust estimates, but also that insufficient quality control (QC) of SNPs can lead to spurious results and that too stringent QC is likely to remove real genetic signals. Our estimates show that common SNPs on commercially available genotyping chips capture significant variation contributing to liability for all three diseases. The estimated proportion of total variation tagged by all SNPs was 0.26 (SE 0.04) for ED, 0.24 (SE 0.03) for AD and 0.30 (SE 0.03) for MS. Further, we partitioned the genetic variance explained into five categories by a minor allele frequency (MAF), by chromosomes and gene annotation. We provide strong evidence that a substantial proportion of variation in liability is explained by common SNPs, and thereby give insights into the genetic architecture of the diseases.