Anatomy and Neuroscience - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 39
  • Item
    Thumbnail Image
    The TAM Receptor Tyro3 Regulates Myelination in the Central Nervous System
    Akkermann, R ; Aprico, A ; Perera, AA ; Bujalka, H ; Cole, AE ; Xiao, J ; Field, J ; Kilpatrick, TJ ; Binder, MD (WILEY, 2017-04)
    Myelin is an essential component of the mammalian nervous system, facilitating rapid conduction of electrical impulses by axons, as well as providing trophic support to neurons. Within the central nervous system, the oligodendrocyte is the specialized neural cell responsible for producing myelin by a process that is thought to be regulated by both activity dependent and independent mechanisms but in incompletely understood ways. We have previously identified that the protein Gas6, a ligand for a family of tyrosine kinase receptors known as the TAM (Tyro3, Axl, and Mertk) receptors, directly increases oligodendrocyte induced myelination in vitro. Gas6 can bind to and activate all three TAM receptors, but the high level of expression of Tyro3 on oligodendrocytes makes this receptor the principal candidate for transducing the pro-myelinating effect of Gas6. In this study, we establish that in the absence of Tyro3, the pro-myelinating effect of Gas6 is lost, that developmental myelination is delayed and that the myelin produced is thinner than normal. We show that this effect is specific to the myelination process and not due to changes in the proliferation or differentiation of oligodendrocyte precursor cells. We have further demonstrated that the reduction in myelination is due to the loss of Tyro3 on oligodendrocytes, and this effect may be mediated by activation of Erk1. Collectively, our findings indicate the critical importance of Tyro3 in potentiating central nervous system myelination. GLIA 2017 GLIA 2017;65:581-591.
  • Item
    Thumbnail Image
    The TAM receptor TYRO3 is a critical regulator of myelin thickness in the central nervous system
    Blades, F ; Aprico, A ; Akkermann, R ; Ellis, S ; Binder, MD ; Kilpatrick, TJ (WILEY, 2018-10)
    Multiple sclerosis (MS) is an autoimmune, demyelinating disease of the central nervous system (CNS). Major deficits arise in MS patients due to an inability to repair damaged myelin sheaths following CNS insult, resulting in prolonged axonal exposure and neurodegeneration. The TAM receptors (Tyro3, Axl, and Mertk) have been implicated in MS susceptibility, demyelination and remyelination. Previously, we have shown that Tyro3 regulates developmental myelination and myelin thickness within the optic nerve and rostral region of the corpus callosum (CC) of adult mice. In this study we have verified and extended our previous findings via a comprehensive analysis of axonal ensheathment and myelin thickness in the CC of unchallenged mice, following demyelination and during myelin repair. We show that the loss of the Tyro3 receptor correlates with significantly thinner myelin sheaths in both unchallenged mice and during remyelination, particularly in larger caliber axons. The hypomyelinated phenotype observed in the absence of Tyro3 occurs independently of any influence upon oligodendrocyte precursor cell (OPC) maturation, or density of oligodendrocytes (OLs) or microglia. Rather, the primary effect of Tyro3 is upon the radial expansion of myelin. The loss of Tyro3 leads to a reduction in the number of myelin lamellae on axons, and is therefore most likely a key component of the regulatory mechanism by which oligodendrocytes match myelin production to axonal diameter.
  • Item
    No Preview Available
    Fine-Mapping the Genetic Association of the Major Histocompatibility Complex in Multiple Sclerosis: HLA and Non-HLA Effects
    Patsopoulos, NA ; Barcellos, LF ; Hintzen, RQ ; Schaefer, C ; Van Duijn, CM ; Noble, JA ; Raj, T ; Gourraud, P-A ; Stranger, BE ; Oksenberg, J ; Olsson, T ; Taylor, BV ; Sawcer, S ; Hafler, DA ; Carrington, M ; De Jager, PL ; De Bakker, PIW ; Gibson, G (PUBLIC LIBRARY SCIENCE, 2013-11)
    The major histocompatibility complex (MHC) region is strongly associated with multiple sclerosis (MS) susceptibility. HLA-DRB1*15:01 has the strongest effect, and several other alleles have been reported at different levels of validation. Using SNP data from genome-wide studies, we imputed and tested classical alleles and amino acid polymorphisms in 8 classical human leukocyte antigen (HLA) genes in 5,091 cases and 9,595 controls. We identified 11 statistically independent effects overall: 6 HLA-DRB1 and one DPB1 alleles in class II, one HLA-A and two B alleles in class I, and one signal in a region spanning from MICB to LST1. This genomic segment does not contain any HLA class I or II genes and provides robust evidence for the involvement of a non-HLA risk allele within the MHC. Interestingly, this region contains the TNF gene, the cognate ligand of the well-validated TNFRSF1A MS susceptibility gene. The classical HLA effects can be explained to some extent by polymorphic amino acid positions in the peptide-binding grooves. This study dissects the independent effects in the MHC, a critical region for MS susceptibility that harbors multiple risk alleles.
  • Item
    Thumbnail Image
    Investigation of Sequential Growth Factor Delivery during Cuprizone Challenge in Mice Aimed to Enhance Oligodendrogliogenesis and Myelin Repair
    Sabo, JK ; Aumann, TD ; Kilpatrick, TJ ; Cate, HS ; Nait-Oumesmar, B (PUBLIC LIBRARY SCIENCE, 2013-05-01)
    Repair in multiple sclerosis involves remyelination, a process in which axons are provided with a new myelin sheath by new oligodendrocytes. Bone morphogenic proteins (BMPs) are a family of growth factors that have been shown to influence the response of oligodendrocyte progenitor cells (OPCs) in vivo during demyelination and remyelination in the adult brain. We have previously shown that BMP4 infusion increases numbers of OPCs during cuprizone-induced demyelination, while infusion of Noggin, an endogenous antagonist of BMP4 increases numbers of mature oligodendrocytes and remyelinated axons following recovery. Additional studies have shown that insulin-like growth factor-1 (IGF-1) promotes the survival of OPCs during cuprizone-induced demyelination. Based on these data, we investigated whether myelin repair could be further enhanced by sequential infusion of these agents firstly, BMP4 to increase OPC numbers, followed by either Noggin or IGF-1 to increase the differentiation and survival of the newly generated OPCs. We identified that sequential delivery of BMP4 and IGF-1 during cuprizone challenge increased the number of mature oligodendrocytes and decreased astrocyte numbers following recovery compared with vehicle infused mice, but did not alter remyelination. However, sequential delivery of BMP4 and Noggin during cuprizone challenge did not alter numbers of oligodendrocytes or astrocytes in the corpus callosum compared with vehicle infused mice. Furthermore, electron microscopy analysis revealed no change in average myelin thickness in the corpus callosum between vehicle infused and BMP4-Noggin infused mice. Our results suggest that while single delivery of Noggin or IGF-1 increased the production of mature oligodendrocytes in vivo in the context of demyelination, only Noggin infusion promoted remyelination. Thus, sequential delivery of BMP4 and Noggin or IGF-1 does not further enhance myelin repair above what occurs with delivery of Noggin alone.
  • Item
    Thumbnail Image
    Identity-by-Descent Mapping to Detect Rare Variants Conferring Susceptibility to Multiple Sclerosis
    Lin, R ; Charlesworth, J ; Stankovich, J ; Perreau, VM ; Brown, MA ; Taylor, BV ; Toland, AE (PUBLIC LIBRARY SCIENCE, 2013-03-05)
    Genome-wide association studies (GWAS) have identified around 60 common variants associated with multiple sclerosis (MS), but these loci only explain a fraction of the heritability of MS. Some missing heritability may be caused by rare variants that have been suggested to play an important role in the aetiology of complex diseases such as MS. However current genetic and statistical methods for detecting rare variants are expensive and time consuming. 'Population-based linkage analysis' (PBLA) or so called identity-by-descent (IBD) mapping is a novel way to detect rare variants in extant GWAS datasets. We employed BEAGLE fastIBD to search for rare MS variants utilising IBD mapping in a large GWAS dataset of 3,543 cases and 5,898 controls. We identified a genome-wide significant linkage signal on chromosome 19 (LOD = 4.65; p = 1.9×10(-6)). Network analysis of cases and controls sharing haplotypes on chromosome 19 further strengthened the association as there are more large networks of cases sharing haplotypes than controls. This linkage region includes a cluster of zinc finger genes of unknown function. Analysis of genome wide transcriptome data suggests that genes in this zinc finger cluster may be involved in very early developmental regulation of the CNS. Our study also indicates that BEAGLE fastIBD allowed identification of rare variants in large unrelated population with moderate computational intensity. Even with the development of whole-genome sequencing, IBD mapping still may be a promising way to narrow down the region of interest for sequencing priority.
  • Item
    Thumbnail Image
    MicroRNAs miR-17 and miR-20a Inhibit T Cell Activation Genes and Are Under-Expressed in MS Whole Blood
    Cox, MB ; Cairns, MJ ; Gandhi, KS ; Carroll, AP ; Moscovis, S ; Stewart, GJ ; Broadley, S ; Scott, RJ ; Booth, DR ; Lechner-Scott, J ; Jacobson, S (PUBLIC LIBRARY SCIENCE, 2010-08-11)
    It is well established that Multiple Sclerosis (MS) is an immune mediated disease. Little is known about what drives the differential control of the immune system in MS patients compared to unaffected individuals. MicroRNAs (miRNAs) are small non-coding nucleic acids that are involved in the control of gene expression. Their potential role in T cell activation and neurodegenerative disease has recently been recognised and they are therefore excellent candidates for further studies in MS. We investigated the transcriptome of currently known miRNAs using miRNA microarray analysis in peripheral blood samples of 59 treatment naïve MS patients and 37 controls. Of these 59, 18 had a primary progressive, 17 a secondary progressive and 24 a relapsing remitting disease course. In all MS subtypes miR-17 and miR-20a were significantly under-expressed in MS, confirmed by RT-PCR. We demonstrate that these miRNAs modulate T cell activation genes in a knock-in and knock-down T cell model. The same T cell activation genes are also up-regulated in MS whole blood mRNA, suggesting these miRNAs or their analogues may provide useful targets for new therapeutic approaches.
  • Item
    Thumbnail Image
    Modeling the cumulative genetic risk for multiple sclerosis from genome-wide association data
    Wang, JH ; Pappas, D ; De Jager, PL ; Pelletier, D ; de Bakker, PIW ; Kappos, L ; Polman, CH ; Chibnik, LB ; Hafler, DA ; Matthews, PM ; Hauser, SL ; Baranzini, SE ; Oksenberg, JR (BMC, 2011)
    BACKGROUND: Multiple sclerosis (MS) is the most common cause of chronic neurologic disability beginning in early to middle adult life. Results from recent genome-wide association studies (GWAS) have substantially lengthened the list of disease loci and provide convincing evidence supporting a multifactorial and polygenic model of inheritance. Nevertheless, the knowledge of MS genetics remains incomplete, with many risk alleles still to be revealed. METHODS: We used a discovery GWAS dataset (8,844 samples, 2,124 cases and 6,720 controls) and a multi-step logistic regression protocol to identify novel genetic associations. The emerging genetic profile included 350 independent markers and was used to calculate and estimate the cumulative genetic risk in an independent validation dataset (3,606 samples). Analysis of covariance (ANCOVA) was implemented to compare clinical characteristics of individuals with various degrees of genetic risk. Gene ontology and pathway enrichment analysis was done using the DAVID functional annotation tool, the GO Tree Machine, and the Pathway-Express profiling tool. RESULTS: In the discovery dataset, the median cumulative genetic risk (P-Hat) was 0.903 and 0.007 in the case and control groups, respectively, together with 79.9% classification sensitivity and 95.8% specificity. The identified profile shows a significant enrichment of genes involved in the immune response, cell adhesion, cell communication/signaling, nervous system development, and neuronal signaling, including ionotropic glutamate receptors, which have been implicated in the pathological mechanism driving neurodegeneration. In the validation dataset, the median cumulative genetic risk was 0.59 and 0.32 in the case and control groups, respectively, with classification sensitivity 62.3% and specificity 75.9%. No differences in disease progression or T2-lesion volumes were observed among four levels of predicted genetic risk groups (high, medium, low, misclassified). On the other hand, a significant difference (F = 2.75, P = 0.04) was detected for age of disease onset between the affected misclassified as controls (mean = 36 years) and the other three groups (high, 33.5 years; medium, 33.4 years; low, 33.1 years). CONCLUSIONS: The results are consistent with the polygenic model of inheritance. The cumulative genetic risk established using currently available genome-wide association data provides important insights into disease heterogeneity and completeness of current knowledge in MS genetics.
  • Item
    Thumbnail Image
    Gas6 Increases Myelination by Oligodendrocytes and Its Deficiency Delays Recovery following Cuprizone-Induced Demyelination
    Binder, MD ; Xiao, J ; Kemper, D ; Ma, GZM ; Murray, SS ; Kilpatrick, TJ ; Guillemin, G (PUBLIC LIBRARY SCIENCE, 2011-03-10)
    Multiple sclerosis (MS) is a complex demyelinating disease of the central nervous system. Current research has shown that at least in some cases, the primary insult in MS could be directed at the oligodendrocyte, and that the earliest immune responses are primarily via innate immune cells. We have identified a family of receptor protein tyrosine kinases, known as the TAM receptors (Tyro3, Axl and Mertk), as potentially important in regulating both the oligodendrocyte and immune responses. We have previously shown that Gas6, a ligand for the TAM receptors, can affect the severity of demyelination in mice, with a loss of signalling via Gas6 leading to decreased oligodendrocyte survival and increased microglial activation during cuprizone-induced demyelination. We hypothesised TAM receptor signalling would also influence the extent of recovery in mice following demyelination. A significant effect of the absence of Gas6 was detected upon remyelination, with a lower level of myelination after 4 weeks of recovery in comparison with wild-type mice. The delay in remyelination was accompanied by a reduction in oligodendrocyte numbers. To understand the molecular mechanisms that drive the observed effects, we also examined the effect of exogenous Gas6 in in vitro myelination assays. We found that Gas6 significantly increased myelination in a dose-dependent manner, suggesting that TAM receptor signalling could be directly involved in myelination by oligodendrocytes. The reduced rate of remyelination in the absence of Gas6 could thus result from a lack of Gas6 at a critical time during myelin production after injury. These findings establish Gas6 as an important regulator of both CNS demyelination and remyelination.
  • Item
    Thumbnail Image
    A Transcription Factor Map as Revealed by a Genome-Wide Gene Expression Analysis of Whole-Blood mRNA Transcriptome in Multiple Sclerosis
    Riveros, C ; Mellor, D ; Gandhi, KS ; McKay, FC ; Cox, MB ; Berretta, R ; Vaezpour, SY ; Inostroza-Ponta, M ; Broadley, SA ; Heard, RN ; Vucic, S ; Stewart, GJ ; Williams, DW ; Scott, RJ ; Lechner-Scott, J ; Booth, DR ; Moscato, P ; Rattray, M (PUBLIC LIBRARY SCIENCE, 2010-12-01)
    BACKGROUND: Several lines of evidence suggest that transcription factors are involved in the pathogenesis of Multiple Sclerosis (MS) but complete mapping of the whole network has been elusive. One of the reasons is that there are several clinical subtypes of MS and transcription factors that may be involved in one subtype may not be in others. We investigate the possibility that this network could be mapped using microarray technologies and contemporary bioinformatics methods on a dataset derived from whole blood in 99 untreated MS patients (36 Relapse Remitting MS, 43 Primary Progressive MS, and 20 Secondary Progressive MS) and 45 age-matched healthy controls. METHODOLOGY/PRINCIPAL FINDINGS: We have used two different analytical methodologies: a non-standard differential expression analysis and a differential co-expression analysis, which have converged on a significant number of regulatory motifs that are statistically overrepresented in genes that are either differentially expressed (or differentially co-expressed) in cases and controls (e.g., V$KROX_Q6, p-value <3.31E-6; V$CREBP1_Q2, p-value <9.93E-6, V$YY1_02, p-value <1.65E-5). CONCLUSIONS/SIGNIFICANCE: Our analysis uncovered a network of transcription factors that potentially dysregulate several genes in MS or one or more of its disease subtypes. The most significant transcription factor motifs were for the Early Growth Response EGR/KROX family, ATF2, YY1 (Yin and Yang 1), E2F-1/DP-1 and E2F-4/DP-2 heterodimers, SOX5, and CREB and ATF families. These transcription factors are involved in early T-lymphocyte specification and commitment as well as in oligodendrocyte dedifferentiation and development, both pathways that have significant biological plausibility in MS causation.
  • Item
    Thumbnail Image
    Optic Nerve Diffusion Tensor Imaging after Acute Optic Neuritis Predicts Axonal and Visual Outcomes
    van der Walt, A ; Kolbe, SC ; Wang, YE ; Klistorner, A ; Shuey, N ; Ahmadi, G ; Paine, M ; Marriott, M ; Mitchell, P ; Egan, GF ; Butzkueven, H ; Kilpatrick, TJ ; Villoslada, P (PUBLIC LIBRARY SCIENCE, 2013-12-26)
    BACKGROUND: Early markers of axonal and clinical outcomes are required for early phase testing of putative neuroprotective therapies for multiple sclerosis (MS). OBJECTIVES: To assess whether early measurement of diffusion tensor imaging (DTI) parameters (axial and radial diffusivity) within the optic nerve during and after acute demyelinating optic neuritis (ON) could predict axonal (retinal nerve fibre layer thinning and multi-focal visual evoked potential amplitude reduction) or clinical (visual acuity and visual field loss) outcomes at 6 or 12 months. METHODS: Thirty-seven patients presenting with acute, unilateral ON were studied at baseline, one, three, six and 12 months using optic nerve DTI, clinical and paraclinical markers of axonal injury and clinical visual dysfunction. RESULTS: Affected nerve axial diffusivity (AD) was reduced at baseline, 1 and 3 months. Reduced 1-month AD correlated with retinal nerve fibre layer (RNFL) thinning at 6 (R=0.38, p=0.04) and 12 months (R=0.437, p=0.008) and VEP amplitude loss at 6 (R=0.414, p=0.019) and 12 months (R=0.484, p=0.003). AD reduction at three months correlated with high contrast visual acuity at 6 (ρ = -0.519, p = 0.001) and 12 months (ρ = -0.414, p=0.011). The time-course for AD reduction for each patient was modelled using a quadratic regression. AD normalised after a median of 18 weeks and longer normalisation times were associated with more pronounced RNFL thinning and mfVEP amplitude loss at 12 months. Affected nerve radial diffusivity (RD) was unchanged until three months, after which time it remained elevated. CONCLUSIONS: These results demonstrate that AD reduces during acute ON. One month AD reduction correlates with the extent of axonal loss and persistent AD reduction at 3 months predicts poorer visual outcomes. This suggests that acute ON therapies that normalise optic nerve AD by 3 months could also promote axon survival and improve visual outcomes.