Anatomy and Neuroscience - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 8 of 8
  • Item
    Thumbnail Image
    Discovery of widespread transcription initiation at microsatellites predictable by sequence-based deep neural network.
    Grapotte, M ; Saraswat, M ; Bessière, C ; Menichelli, C ; Ramilowski, JA ; Severin, J ; Hayashizaki, Y ; Itoh, M ; Tagami, M ; Murata, M ; Kojima-Ishiyama, M ; Noma, S ; Noguchi, S ; Kasukawa, T ; Hasegawa, A ; Suzuki, H ; Nishiyori-Sueki, H ; Frith, MC ; FANTOM consortium, ; Chatelain, C ; Carninci, P ; de Hoon, MJL ; Wasserman, WW ; Bréhélin, L ; Lecellier, C-H (Springer Science and Business Media LLC, 2021-06-02)
    Using the Cap Analysis of Gene Expression (CAGE) technology, the FANTOM5 consortium provided one of the most comprehensive maps of transcription start sites (TSSs) in several species. Strikingly, ~72% of them could not be assigned to a specific gene and initiate at unconventional regions, outside promoters or enhancers. Here, we probe these unassigned TSSs and show that, in all species studied, a significant fraction of CAGE peaks initiate at microsatellites, also called short tandem repeats (STRs). To confirm this transcription, we develop Cap Trap RNA-seq, a technology which combines cap trapping and long read MinION sequencing. We train sequence-based deep learning models able to predict CAGE signal at STRs with high accuracy. These models unveil the importance of STR surrounding sequences not only to distinguish STR classes, but also to predict the level of transcription initiation. Importantly, genetic variants linked to human diseases are preferentially found at STRs with high transcription initiation level, supporting the biological and clinical relevance of transcription initiation at STRs. Together, our results extend the repertoire of non-coding transcription associated with DNA tandem repeats and complexify STR polymorphism.
  • Item
    Thumbnail Image
    Maternal Influences on the Transmission of Leukocyte Gene Expression Profiles in Population Samples from Brisbane, Australia
    Mason, E ; Tronc, G ; Nones, K ; Matigian, N ; Kim, J ; Aronow, BJ ; Wolfinger, RD ; Wells, C ; Gibson, G ; Unutmaz, D (PUBLIC LIBRARY SCIENCE, 2010-12-31)
    Two gene expression profiling studies designed to identify maternal influences on development of the neonate immune system and to address the population structure of the leukocyte transcriptome were carried out in Brisbane, Australia. In the first study, a comparison of 19 leukocyte samples obtained from mothers in the last three weeks of pregnancy with 37 umbilical cord blood samples documented differential expression of 7,382 probes at a false discovery rate of 1%, representing approximately half of the expressed transcriptome. An even larger component of the variation involving 8,432 probes, notably enriched for Vitamin E and methotrexate-responsive genes, distinguished two sets of individuals, with perfect transmission of the two profile types between each of 16 mother-child pairs in the study. A minor profile of variation was found to distinguish the gene expression profiles of obese mothers and children of gestational diabetic mothers from those of children born to obese mothers. The second study was of adult leukocyte profiles from a cross-section of Red Cross blood donors sampled throughout Brisbane. The first two axes in this study are related to the third and fourth axes of variation in the first study and also reflect variation in the abundance of CD4 and CD8 transcripts. One of the profiles associated with the third axis is largely excluded from samples from the central portion of the city. Despite enrichment of insulin signaling and aspects of central metabolism among the differentially expressed genes, there was little correlation between leukocyte expression profiles and body mass index overall. Our data is consistent with the notion that maternal health and cytokine milieu directly impact gene expression in fetal tissues, but that there is likely to be a complex interplay between cultural, genetic, and other environmental factors in the programming of gene expression in leukocytes of newborn children.
  • Item
    Thumbnail Image
    Identification of a Sacral, Visceral Sensory Transcriptome in Embryonic and Adult Mice
    Smith-Anttila, CJA ; Mason, EA ; Wells, CA ; Aronow, BJ ; Osborne, PB ; Keast, JR (SOC NEUROSCIENCE, 2020)
    Visceral sensory neurons encode distinct sensations from healthy organs and initiate pain states that are resistant to common analgesics. Transcriptome analysis is transforming our understanding of sensory neuron subtypes but has generally focused on somatic sensory neurons or the total population of neurons in which visceral neurons form the minority. Our aim was to define transcripts specifically expressed by sacral visceral sensory neurons, as a step towards understanding the unique biology of these neurons and potentially leading to identification of new analgesic targets for pelvic visceral pain. Our strategy was to identify genes differentially expressed between sacral dorsal root ganglia (DRG) that include somatic neurons and sacral visceral neurons, and adjacent lumbar DRG that comprise exclusively of somatic sensory neurons. This was performed in adult and E18.5 male and female mice. By developing a method to restrict analyses to nociceptive Trpv1 neurons, a larger group of genes were detected as differentially expressed between spinal levels. We identified many novel genes that had not previously been associated with pelvic visceral sensation or nociception. Limited sex differences were detected across the transcriptome of sensory ganglia, but more were revealed in sacral levels and especially in Trpv1 nociceptive neurons. These data will facilitate development of new tools to modify mature and developing sensory neurons and nociceptive pathways.
  • Item
    Thumbnail Image
    Unique properties of a subset of human pluripotent stem cells with high capacity for self-renewal
    Lau, KX ; Mason, EA ; Kie, J ; De Souza, DP ; Kloehn, J ; Tull, D ; McConville, MJ ; Keniry, A ; Beck, T ; Blewitt, ME ; Ritchie, ME ; Naik, SH ; Zalcenstein, D ; Korn, O ; Su, S ; Romero, IG ; Spruce, C ; Baker, CL ; McGarr, TC ; Wells, CA ; Pera, MF (Nature Research, 2020-05-15)
    Archetypal human pluripotent stem cells (hPSC) are widely considered to be equivalent in developmental status to mouse epiblast stem cells, which correspond to pluripotent cells at a late post-implantation stage of embryogenesis. Heterogeneity within hPSC cultures complicates this interspecies comparison. Here we show that a subpopulation of archetypal hPSC enriched for high self-renewal capacity (ESR) has distinct properties relative to the bulk of the population, including a cell cycle with a very low G1 fraction and a metabolomic profile that reflects a combination of oxidative phosphorylation and glycolysis. ESR cells are pluripotent and capable of differentiation into primordial germ cell-like cells. Global DNA methylation levels in the ESR subpopulation are lower than those in mouse epiblast stem cells. Chromatin accessibility analysis revealed a unique set of open chromatin sites in ESR cells. RNA-seq at the subpopulation and single cell levels shows that, unlike mouse epiblast stem cells, the ESR subset of hPSC displays no lineage priming, and that it can be clearly distinguished from gastrulating and extraembryonic cell populations in the primate embryo. ESR hPSC correspond to an earlier stage of post-implantation development than mouse epiblast stem cells.
  • Item
    Thumbnail Image
    Dynamic interplay of innate and adaptive immunity during sterile retinal inflammation: Insights from the transcriptome
    Natoli, R ; Mason, E ; Jiao, H ; Chuah, A ; Patel, H ; Fernando, N ; Valter, K ; Wells, C ; Provis, J ; Rutar, M (Frontiers Media, 2018-02-24)
    The pathogenesis of many retinal degenerations, such as age-related macular degeneration (AMD), is punctuated by an ill-defined network of sterile inflammatory responses. The delineation of innate and adaptive immune milieu amongst the broad leukocyte infiltrate, and the gene networks which construct these responses, are poorly described in the eye. Using photo-oxidative damage in a rodent model of subretinal inflammation, we employed a novel RNA-sequencing framework to map the global gene network signature of retinal leukocytes. This revealed a previously uncharted interplay of adaptive immunity during subretinal inflammation, including prolonged enrichment of myeloid and lymphocyte migration, antigen presentation, and the alternative arm of the complement cascade involving Factor B. We demonstrate Factor B-deficient mice are protected against macrophage infiltration and subretinal inflammation. Suppressing the drivers of retinal leukocyte proliferation, or their capacity to elicit complement responses, may help preserve retinal structure and function during sterile inflammation in diseases such as AMD.
  • Item
    Thumbnail Image
    Single-Cell Gene Expression Profiles Define Self-Renewing, Pluripotent, and Lineage Primed States of Human Pluripotent Stem Cells
    Hough, SR ; Thornton, M ; Mason, E ; Mar, JC ; Wells, CA ; Pera, MF (CELL PRESS, 2014-06-03)
    Pluripotent stem cells display significant heterogeneity in gene expression, but whether this diversity is an inherent feature of the pluripotent state remains unknown. Single-cell gene expression analysis in cell subsets defined by surface antigen expression revealed that human embryonic stem cell cultures exist as a continuum of cell states, even under defined conditions that drive self-renewal. The majority of the population expressed canonical pluripotency transcription factors and could differentiate into derivatives of all three germ layers. A minority subpopulation of cells displayed high self-renewal capacity, consistently high transcripts for all pluripotency-related genes studied, and no lineage priming. This subpopulation was characterized by its expression of a particular set of intercellular signaling molecules whose genes shared common regulatory features. Our data support a model of an inherently metastable self-renewing population that gives rise to a continuum of intermediate pluripotent states, which ultimately become primed for lineage specification.
  • Item
    Thumbnail Image
    A molecular classification of human mesenchymal stromal cells
    Rohart, F ; Mason, EA ; Matigian, N ; Mosbergen, R ; Korn, O ; Chen, T ; Butcher, S ; Patel, J ; Atkinson, K ; Khosrotehrani, K ; Fisk, NM ; Le Cao, K-A ; Wells, CA (PEERJ INC, 2016-03-24)
    Mesenchymal stromal cells (MSC) are widely used for the study of mesenchymal tissue repair, and increasingly adopted for cell therapy, despite the lack of consensus on the identity of these cells. In part this is due to the lack of specificity of MSC markers. Distinguishing MSC from other stromal cells such as fibroblasts is particularly difficult using standard analysis of surface proteins, and there is an urgent need for improved classification approaches. Transcriptome profiling is commonly used to describe and compare different cell types; however, efforts to identify specific markers of rare cellular subsets may be confounded by the small sample sizes of most studies. Consequently, it is difficult to derive reproducible, and therefore useful markers. We addressed the question of MSC classification with a large integrative analysis of many public MSC datasets. We derived a sparse classifier (The Rohart MSC test) that accurately distinguished MSC from non-MSC samples with >97% accuracy on an internal training set of 635 samples from 41 studies derived on 10 different microarray platforms. The classifier was validated on an external test set of 1,291 samples from 65 studies derived on 15 different platforms, with >95% accuracy. The genes that contribute to the MSC classifier formed a protein-interaction network that included known MSC markers. Further evidence of the relevance of this new MSC panel came from the high number of Mendelian disorders associated with mutations in more than 65% of the network. These result in mesenchymal defects, particularly impacting on skeletal growth and function. The Rohart MSC test is a simple in silico test that accurately discriminates MSC from fibroblasts, other adult stem/progenitor cell types or differentiated stromal cells. It has been implemented in the www.stemformatics.org resource, to assist researchers wishing to benchmark their own MSC datasets or data from the public domain. The code is available from the CRAN repository and all data used to generate the MSC test is available to download via the Gene Expression Omnibus or the Stemformatics resource.
  • Item
    Thumbnail Image
    Gene Expression Variability as a Unifying Element of the Pluripotency Network
    Mason, EA ; Mar, JC ; Laslett, AL ; Pera, MF ; Quackenbush, J ; Wolvetang, E ; Wells, CA (CELL PRESS, 2014-08-12)
    Heterogeneity is a hallmark of stem cell populations, in part due to the molecular differences between cells undergoing self-renewal and those poised to differentiate. We examined phenotypic and molecular heterogeneity in pluripotent stem cell populations, using public gene expression data sets. A high degree of concordance was observed between global gene expression variability and the reported heterogeneity of different human pluripotent lines. Network analysis demonstrated that low-variability genes were the most highly connected, suggesting that these are the most stable elements of the gene regulatory network and are under the highest regulatory constraints. Known drivers of pluripotency were among these, with lowest expression variability of POU5F1 in cells with the highest capacity for self-renewal. Variability of gene expression provides a reliable measure of phenotypic and molecular heterogeneity and predicts those genes with the highest degree of regulatory constraint within the pluripotency network.