Anatomy and Neuroscience - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 1 of 1
  • Item
    Thumbnail Image
    Human ability to scale and discriminate forces typical of those occurring during grasp and manipulation
    Wheat, HE ; Salo, LM ; Goodwin, AW (SOC NEUROSCIENCE, 2004-03-31)
    When humans manipulate objects, the sensorimotor system coordinates three-dimensional forces to optimize and maintain grasp stability. To do this, the CNS requires precise information about the magnitude and direction of load force (tangential to skin surface) plus feedback about grip force (normal to skin). Previous studies have shown that there is rapid, precise coordination between grip and load forces that deteriorates with digital nerve block. Obviously, mechanoreceptive afferents innervating fingerpad skin contribute essential information. We quantify human capacity to scale tangential and normal forces using only cutaneous information. Our paradigm simulated natural manipulations (a force tangential to the skin superimposed on an indenting force normal to the skin). Precisely controlled forces were applied by a custom-built stimulator to an immobilized fingerpad. Using magnitude estimation, subjects (n = 8) scaled the magnitude of tangential force (0.25-2.8 N) in two experiments (normal force, 2.5 and 4 N, respectively). Performance was unaffected by normal force magnitude and tangential force direction. Moreover, when both normal (2-4 N) and tangential forces were varied in a randomized-block factorial design, the relationship between applied and perceived tangential force remained near linear, with a minor but statistically significant nonlinearity. Our subjects could also discriminate small differences in tangential force, and this was the case for two different reference stimuli. In both cases, the Weber fraction was 0.16. Finally, scaling functions for magnitude estimates of normal force (1-5 N) were also approximately linear. These data show that the cutaneous afferents provide a wealth of precise information about both normal and tangential force.