Anatomy and Neuroscience - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    An integrated analysis of human myeloid cells identifies gaps in in vitro models of in vivo biology
    Rajab, N ; Angel, PW ; Deng, Y ; Gu, J ; Jameson, V ; Kurowska-Stolarska, M ; Milling, S ; Pacheco, CM ; Rutar, M ; Laslett, AL ; Cao, K-AL ; Choi, J ; Wells, CA (CELL PRESS, 2021-06-08)
    The Stemformatics myeloid atlas is an integrated transcriptome atlas of human macrophages and dendritic cells that systematically compares freshly isolated tissue-resident, cultured, and pluripotent stem cell-derived myeloid cells. Three classes of tissue-resident macrophage were identified: Kupffer cells and microglia; monocyte-associated; and tumor-associated macrophages. Culture had a major impact on all primary cell phenotypes. Pluripotent stem cell-derived macrophages were characterized by atypical expression of collagen and a highly efferocytotic phenotype. Myeloid subsets, and phenotypes associated with derivation, were reproducible across experimental series including data projected from single-cell studies, demonstrating that the atlas provides a robust reference for myeloid phenotypes. Implementation in allows users to visualize patterns of sample grouping or gene expression for user-selected conditions and supports temporary upload of your own microarray or RNA sequencing samples, including single-cell data, to benchmark against the atlas.
  • Item
    Thumbnail Image
    A simple, scalable approach to building a cross-platform transcriptome atlas
    Angel, PW ; Rajab, N ; Deng, Y ; Pacheco, CM ; Chen, T ; Le Cao, K-A ; Choi, J ; Wells, CA ; Fertig, EJ (PUBLIC LIBRARY SCIENCE, 2020-09-01)
    Gene expression atlases have transformed our understanding of the development, composition and function of human tissues. New technologies promise improved cellular or molecular resolution, and have led to the identification of new cell types, or better defined cell states. But as new technologies emerge, information derived on old platforms becomes obsolete. We demonstrate that it is possible to combine a large number of different profiling experiments summarised from dozens of laboratories and representing hundreds of donors, to create an integrated molecular map of human tissue. As an example, we combine 850 samples from 38 platforms to build an integrated atlas of human blood cells. We achieve robust and unbiased cell type clustering using a variance partitioning method, selecting genes with low platform bias relative to biological variation. Other than an initial rescaling, no other transformation to the primary data is applied through batch correction or renormalisation. Additional data, including single-cell datasets, can be projected for comparison, classification and annotation. The resulting atlas provides a multi-scaled approach to visualise and analyse the relationships between sets of genes and blood cell lineages, including the maturation and activation of leukocytes in vivo and in vitro. In allowing for data integration across hundreds of studies, we address a key reproduciblity challenge which is faced by any new technology. This allows us to draw on the deep phenotypes and functional annotations that accompany traditional profiling methods, and provide important context to the high cellular resolution of single cell profiling. Here, we have implemented the blood atlas in the open access platform, drawing on its extensive collection of curated transcriptome data. The method is simple, scalable and amenable for rapid deployment in other biological systems or computational workflows.