Anatomy and Neuroscience - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 39
  • Item
    Thumbnail Image
    Fungal-derived cues promote ocular autoimmunity through a Dectin-2/Card9-mediated mechanism
    Brown, BR ; Lee, EJ ; Snow, PE ; Vance, EE ; Iwakura, Y ; Ohno, N ; Miura, N ; Lin, X ; Brown, GD ; Wells, CA ; Smith, JR ; Caspi, RR ; Rosenzweig, HL (WILEY, 2017-12-01)
    Uveitis (intraocular inflammation) is a leading cause of loss of vision. Although its aetiology is largely speculative, it is thought to arise from complex genetic-environmental interactions that break immune tolerance to generate eye-specific autoreactive T cells. Experimental autoimmune uveitis (EAU), induced by immunization with the ocular antigen, interphotoreceptor retinoid binding protein (IRBP), in combination with mycobacteria-containing complete Freund's adjuvant (CFA), has many clinical and histopathological features of human posterior uveitis. Studies in EAU have focused on defining pathogenic CD4+ T cell effector responses, such as those of T helper type 17 (Th17) cells, but the innate receptor pathways precipitating development of autoreactive, eye-specific T cells remain poorly defined. In this study, we found that fungal-derived antigens possess autoimmune uveitis-promoting function akin to CFA in conventional EAU. The capacity of commensal fungi such as Candida albicans or Saccharomyces cerevisae to promote IRBP-triggered EAU was mediated by Card9. Because Card9 is an essential signalling molecule of a subgroup of C-type lectin receptors (CLRs) important in host defence, we evaluated further the proximal Card9-activating CLRs. Using single receptor-deficient mice we identified Dectin-2, but not Mincle or Dectin-1, as a predominant mediator of fungal-promoted uveitis. Conversely, Dectin-2 activation by α-mannan reproduced the uveitic phenotype of EAU sufficiently, in a process mediated by the Card9-coupled signalling axis and interleukin (IL)-17 production. Taken together, this report relates the potential of the Dectin-2/Card9-coupled pathway in ocular autoimmunity. Not only does it contribute to understanding of how innate immune receptors orchestrate T cell-mediated autoimmunity, it also reveals a previously unappreciated ability of fungal-derived signals to promote autoimmunity.
  • Item
    Thumbnail Image
    Characterization of Phenotypic and Transcriptional Differences in Human Pluripotent Stem Cells under 2D and 3D Culture Conditions
    Kamei, K-I ; Koyama, Y ; Tokunaga, Y ; Mashimo, Y ; Yoshioka, M ; Fockenberg, C ; Mosbergen, R ; Korn, O ; Wells, C ; Chen, Y (WILEY, 2016-11-23)
    Human pluripotent stem cells hold great promise for applications in drug discovery and regenerative medicine. Microfluidic technology is a promising approach for creating artificial microenvironments; however, although a proper 3D microenvironment is required to achieve robust control of cellular phenotypes, most current microfluidic devices provide only 2D cell culture and do not allow tuning of physical and chemical environmental cues simultaneously. Here, the authors report a 3D cellular microenvironment plate (3D-CEP), which consists of a microfluidic device filled with thermoresponsive poly(N-isopropylacrylamide)-β-poly(ethylene glycol) hydrogel (HG), which enables systematic tuning of both chemical and physical environmental cues as well as in situ cell monitoring. The authors show that H9 human embryonic stem cells (hESCs) and 253G1 human induced pluripotent stem cells in the HG/3D-CEP system maintain their pluripotent marker expression under HG/3D-CEP self-renewing conditions. Additionally, global gene expression analyses are used to elucidate small variations among different test environments. Interestingly, the authors find that treatment of H9 hESCs under HG/3D-CEP self-renewing conditions results in initiation of entry into the neural differentiation process by induction of PAX3 and OTX1 expression. The authors believe that this HG/3D-CEP system will serve as a versatile platform for developing targeted functional cell lines and facilitate advances in drug screening and regenerative medicine.
  • Item
    Thumbnail Image
    Exposure to chorioamnionitis alters the monocyte transcriptional response to the neonatal pathogen Staphylococcus epidermidis
    de Jong, E ; Hancock, DG ; Wells, C ; Richmond, P ; Simmer, K ; Burgner, D ; Strunk, T ; Currie, AJ (WILEY, 2018-09-01)
    Preterm infants are uniquely susceptible to late-onset sepsis that is frequently caused by the skin commensal Staphylococcus epidermidis. Innate immune responses, particularly from monocytes, are a key protective mechanism. Impaired cytokine production by preterm infant monocytes is well described, but few studies have comprehensively assessed the corresponding monocyte transcriptional response. Innate immune responses in preterm infants may be modulated by inflammation such as prenatal exposure to histologic chorioamnionitis which complicates 40-70% of preterm pregnancies. Chorioamnionitis alters the risk of late-onset sepsis, but its effect on monocyte function is largely unknown. Here, we aimed to determine the impact of exposure to chorioamnionitis on the proportions and phenotype of cord blood monocytes using flow cytometry, as well as their transcriptional response to live S. epidermidis. RNA-seq was performed on purified cord blood monocytes from very preterm infants (<32 weeks gestation, with and without chorioamnionitis-exposure) and term infants (37-40 weeks), pre- and postchallenge with live S. epidermidis. Preterm monocytes from infants without chorioamnionitis-exposure did not exhibit an intrinsically deficient transcriptional response to S. epidermidis compared to term infants. In contrast, chorioamnionitis-exposure was associated with hypo-responsive transcriptional phenotype regarding a subset of genes involved in antigen presentation and adaptive immunity. Overall, our findings suggest that prenatal exposure to inflammation may alter the risk of sepsis in preterm infants partly by modulation of monocyte responses to pathogens.
  • Item
    Thumbnail Image
    Ceruloplasmin Is a Novel Adipokine Which Is Overexpressed in Adipose Tissue of Obese Subjects and in Obesity-Associated Cancer Cells
    Arner, E ; Forrest, ARR ; Ehrlund, A ; Mejhert, N ; Itoh, M ; Kawaji, H ; Lassmann, T ; Laurencikiene, J ; Ryden, M ; Arner, P ; Wu, Q (PUBLIC LIBRARY SCIENCE, 2014-03-27)
    Obesity confers an increased risk of developing specific cancer forms. Although the mechanisms are unclear, increased fat cell secretion of specific proteins (adipokines) may promote/facilitate development of malignant tumors in obesity via cross-talk between adipose tissue(s) and the tissues prone to develop cancer among obese. We searched for novel adipokines that were overexpressed in adipose tissue of obese subjects as well as in tumor cells derived from cancers commonly associated with obesity. For this purpose expression data from human adipose tissue of obese and non-obese as well as from a large panel of human cancer cell lines and corresponding primary cells and tissues were explored. We found expression of ceruloplasmin to be the most enriched in obesity-associated cancer cells. This gene was also significantly up-regulated in adipose tissue of obese subjects. Ceruloplasmin is the body's main copper carrier and is involved in angiogenesis. We demonstrate that ceruloplasmin is a novel adipokine, which is produced and secreted at increased rates in obesity. In the obese state, adipose tissue contributed markedly (up to 22%) to the total circulating protein level. In summary, we have through bioinformatic screening identified ceruloplasmin as a novel adipokine with increased expression in adipose tissue of obese subjects as well as in cells from obesity-associated cancers. Whether there is a causal relationship between adipose overexpression of ceruloplasmin and cancer development in obesity cannot be answered by these cross-sectional comparisons.
  • Item
    Thumbnail Image
    CCL2 enhances pluripotency of human induced pluripotent stem cells by activating hypoxia related genes
    Hasegawa, Y ; Tang, D ; Takahashi, N ; Hayashizaki, Y ; Forrest, ARR ; Suzuki, H (NATURE PUBLISHING GROUP, 2014-06-24)
    Standard culture of human induced pluripotent stem cells (hiPSCs) requires basic Fibroblast Growth Factor (bFGF) to maintain the pluripotent state, whereas hiPSC more closely resemble epiblast stem cells than true naïve state ES which requires LIF to maintain pluripotency. Here we show that chemokine (C-C motif) ligand 2 (CCL2) enhances the expression of pluripotent marker genes through the phosphorylation of the signal transducer and activator of transcription 3 (STAT3) protein. Moreover, comparison of transcriptomes between hiPSCs cultured with CCL2 versus with bFGF, we found that CCL2 activates hypoxia related genes, suggesting that CCL2 enhanced pluripotency by inducing a hypoxic-like response.Further, we show that hiPSCs cultured with CCL2 can differentiate at a higher efficiency than culturing withjust bFGF and we show CCL2 can be used in feeder-free conditions [corrected]. Taken together, our finding indicates the novel functions of CCL2 in enhancing its pluripotency in hiPSCs.
  • Item
    Thumbnail Image
    Application of Gene Expression Trajectories Initiated from ErbB Receptor Activation Highlights the Dynamics of Divergent Promoter Usage
    Carbajo, D ; Magi, S ; Itoh, M ; Kawaji, H ; Lassmann, T ; Arner, E ; Forrest, ARR ; Carninci, P ; Hayashizaki, Y ; Daub, CO ; Okada-Hatakeyama, M ; Mar, JC ; Ramchandran, R (PUBLIC LIBRARY SCIENCE, 2015-12-14)
    Understanding how cells use complex transcriptional programs to alter their fate in response to specific stimuli is an important question in biology. For the MCF-7 human breast cancer cell line, we applied gene expression trajectory models to identify the genes involved in driving cell fate transitions. We modified trajectory models to account for the scenario where cells were exposed to different stimuli, in this case epidermal growth factor and heregulin, to arrive at different cell fates, i.e. proliferation and differentiation respectively. Using genome-wide CAGE time series data collected from the FANTOM5 consortium, we identified the sets of promoters that were involved in the transition of MCF-7 cells to their specific fates versus those with expression changes that were generic to both stimuli. Of the 1,552 promoters identified, 1,091 had stimulus-specific expression while 461 promoters had generic expression profiles over the time course surveyed. Many of these stimulus-specific promoters mapped to key regulators of the ERK (extracellular signal-regulated kinases) signaling pathway such as FHL2 (four and a half LIM domains 2). We observed that in general, generic promoters peaked in their expression early on in the time course, while stimulus-specific promoters tended to show activation of their expression at a later stage. The genes that mapped to stimulus-specific promoters were enriched for pathways that control focal adhesion, p53 signaling and MAPK signaling while generic promoters were enriched for cell death, transcription and the cell cycle. We identified 162 genes that were controlled by an alternative promoter during the time course where a subset of 37 genes had separate promoters that were classified as stimulus-specific and generic. The results of our study highlighted the degree of complexity involved in regulating a cell fate transition where multiple promoters mapping to the same gene can demonstrate quite divergent expression profiles.
  • Item
    No Preview Available
    attract: A Method for Identifying Core Pathways That Define Cellular Phenotypes
    Mar, JC ; Matigian, NA ; Quackenbush, J ; Wells, CA ; Csermely, P (PUBLIC LIBRARY SCIENCE, 2011-10-14)
    attract is a knowledge-driven analytical approach for identifying and annotating the gene-sets that best discriminate between cell phenotypes. attract finds distinguishing patterns within pathways, decomposes pathways into meta-genes representative of these patterns, and then generates synexpression groups of highly correlated genes from the entire transcriptome dataset. attract can be applied to a wide range of biological systems and is freely available as a Bioconductor package and has been incorporated into the MeV software system.
  • Item
    Thumbnail Image
    Maternal Influences on the Transmission of Leukocyte Gene Expression Profiles in Population Samples from Brisbane, Australia
    Mason, E ; Tronc, G ; Nones, K ; Matigian, N ; Kim, J ; Aronow, BJ ; Wolfinger, RD ; Wells, C ; Gibson, G ; Unutmaz, D (PUBLIC LIBRARY SCIENCE, 2010-12-31)
    Two gene expression profiling studies designed to identify maternal influences on development of the neonate immune system and to address the population structure of the leukocyte transcriptome were carried out in Brisbane, Australia. In the first study, a comparison of 19 leukocyte samples obtained from mothers in the last three weeks of pregnancy with 37 umbilical cord blood samples documented differential expression of 7,382 probes at a false discovery rate of 1%, representing approximately half of the expressed transcriptome. An even larger component of the variation involving 8,432 probes, notably enriched for Vitamin E and methotrexate-responsive genes, distinguished two sets of individuals, with perfect transmission of the two profile types between each of 16 mother-child pairs in the study. A minor profile of variation was found to distinguish the gene expression profiles of obese mothers and children of gestational diabetic mothers from those of children born to obese mothers. The second study was of adult leukocyte profiles from a cross-section of Red Cross blood donors sampled throughout Brisbane. The first two axes in this study are related to the third and fourth axes of variation in the first study and also reflect variation in the abundance of CD4 and CD8 transcripts. One of the profiles associated with the third axis is largely excluded from samples from the central portion of the city. Despite enrichment of insulin signaling and aspects of central metabolism among the differentially expressed genes, there was little correlation between leukocyte expression profiles and body mass index overall. Our data is consistent with the notion that maternal health and cytokine milieu directly impact gene expression in fetal tissues, but that there is likely to be a complex interplay between cultural, genetic, and other environmental factors in the programming of gene expression in leukocytes of newborn children.
  • Item
    Thumbnail Image
    Variance of Gene Expression Identifies Altered Network Constraints in Neurological Disease
    Mar, JC ; Matigian, NA ; Mackay-Sim, A ; Mellick, GD ; Sue, CM ; Silburn, PA ; McGrath, JJ ; Quackenbush, J ; Wells, CA ; Gibson, G (PUBLIC LIBRARY SCIENCE, 2011-08-01)
    Gene expression analysis has become a ubiquitous tool for studying a wide range of human diseases. In a typical analysis we compare distinct phenotypic groups and attempt to identify genes that are, on average, significantly different between them. Here we describe an innovative approach to the analysis of gene expression data, one that identifies differences in expression variance between groups as an informative metric of the group phenotype. We find that genes with different expression variance profiles are not randomly distributed across cell signaling networks. Genes with low-expression variance, or higher constraint, are significantly more connected to other network members and tend to function as core members of signal transduction pathways. Genes with higher expression variance have fewer network connections and also tend to sit on the periphery of the cell. Using neural stem cells derived from patients suffering from Schizophrenia (SZ), Parkinson's disease (PD), and a healthy control group, we find marked differences in expression variance in cell signaling pathways that shed new light on potential mechanisms associated with these diverse neurological disorders. In particular, we find that expression variance of core networks in the SZ patient group was considerably constrained, while in contrast the PD patient group demonstrated much greater variance than expected. One hypothesis is that diminished variance in SZ patients corresponds to an increased degree of constraint in these pathways and a corresponding reduction in robustness of the stem cell networks. These results underscore the role that variation plays in biological systems and suggest that analysis of expression variance is far more important in disease than previously recognized. Furthermore, modeling patterns of variability in gene expression could fundamentally alter the way in which we think about how cellular networks are affected by disease processes.
  • Item
    Thumbnail Image
    Multipotent human stromal cells isolated from cord blood, term placenta and adult bone marrow show distinct differences in gene expression pattern
    Matigian, N ; Brooke, G ; Zaibak, F ; Rossetti, T ; Kollar, K ; Pelekanos, R ; Heazlewood, C ; Mackay-Sim, A ; Wells, CA ; Atkinson, K (ELSEVIER SCIENCE BV, 2015-03-01)
    Multipotent mesenchymal stromal cells derived from human placenta (pMSCs), and unrestricted somatic stem cells (USSCs) derived from cord blood share many properties with human bone marrow-derived mesenchymal stromal cells (bmMSCs) and are currently in clinical trials for a wide range of clinical settings. Here we present gene expression profiles of human cord blood-derived unrestricted somatic stem cells (USSCs), human placental-derived mesenchymal stem cells (hpMSCs), and human bone marrow-derived mesenchymal stromal cells (bmMSCs), all derived from four different donors. The microarray data are available on the ArrayExpress database (www.ebi.ac.uk/arrayexpress) under accession number E-TABM-880. Additionally, the data has been integrated into a public portal, www.stemformatics.org. Our data provide a resource for understanding the differences in MSCs derived from different tissues.