- Anatomy and Neuroscience - Research Publications
Anatomy and Neuroscience - Research Publications
Permanent URI for this collection
1630 results
Filters
Settings
Statistics
Citations
Search Results
Now showing
1 - 10 of 1630
-
ItemEphA4 (Sek1) receptor tyrosine kinase is required for the development of the corticospinal tractDottori, M ; Hartley, L ; Galea, M ; Paxinos, G ; Polizzotto, M ; Kilpatrick, T ; Bartlett, PF ; Murphy, M ; Kontgen, F ; Boyd, AW (NATL ACAD SCIENCES, 1998-10-27)Members of the Eph family of tyrosine kinase receptors have been implicated in the regulation of developmental processes and, in particular, axon guidance in the developing nervous system. The function of the EphA4 (Sek1) receptor was explored through creation of a null mutant mouse. Mice with a null mutation in the EphA4 gene are viable and fertile but have a gross motor dysfunction, which is evidenced by a loss of coordination of limb movement and a resultant hopping, kangaroo-like gait. Consistent with the observed phenotype, anatomical studies and anterograde tracing experiments reveal major disruptions of the corticospinal tract within the medulla and spinal cord in the null mutant animals. These results demonstrate a critical role for EphA4 in establishing the corticospinal projection.
-
ItemElectrophysiological characterization of spontaneous recovery in deep dorsal horn interneurons after incomplete spinal cord injuryRank, MM ; Flynn, JR ; Galea, MP ; Callister, R ; Callister, RJ (ACADEMIC PRESS INC ELSEVIER SCIENCE, 2015-09-01)In the weeks and months following an incomplete spinal cord injury (SCI) significant spontaneous recovery of function occurs in the absence of any applied therapeutic intervention. The anatomical correlates of this spontaneous plasticity are well characterized, however, the functional changes that occur in spinal cord interneurons after injury are poorly understood. Here we use a T10 hemisection model of SCI in adult mice (9-10 wks old) combined with whole-cell patch clamp electrophysiology and a horizontal spinal cord slice preparation to examine changes in intrinsic membrane and synaptic properties of deep dorsal horn (DDH) interneurons. We made these measurements during short-term (4 wks) and long-term (10 wks) spontaneous recovery after SCI. Several important intrinsic membrane properties are altered in the short-term, but recover to values resembling those of uninjured controls in the longer term. AP discharge patterns are reorganized at both short-term and long-term recovery time points. This is matched by reorganization in the expression of voltage-activated potassium and calcium subthreshold-currents that shape AP discharge. Excitatory synaptic inputs onto DDH interneurons are significantly restructured in long-term SCI mice. Plots of sEPSC peak amplitude vs. rise times suggest considerable dendritic expansion or synaptic reorganization occurs especially during long-term recovery from SCI. Connectivity between descending dorsal column pathways and DDH interneurons is reduced in the short-term, but amplified in long-term recovery. Our results suggest considerable plasticity in both intrinsic and synaptic mechanisms occurs spontaneously in DDH interneurons following SCI and takes a minimum of 10 wks after the initial injury to stabilize.
-
ItemDeveloping a spinal cord injury research strategy using a structured process of evidence review and stakeholder dialogue. Part III: outcomesMiddleton, JW ; Piccenna, L ; Gruen, RL ; Williams, S ; Creasey, G ; Dunlop, S ; Brown, D ; Batchelor, PE ; Berlowitz, DJ ; Coates, S ; Dunn, JA ; Furness, JB ; Galea, MP ; Geraghty, T ; Kwon, BK ; Urquhart, S ; Yates, D ; Bragge, P (NATURE PUBLISHING GROUP, 2015-10-01)STUDY DESIGN: Focus Group. OBJECTIVES: To develop a unified, regional spinal cord injury (SCI) research strategy for Australia and New Zealand. SETTING: Australia. METHODS: A 1-day structured stakeholder dialogue was convened in 2013 in Melbourne, Australia, by the National Trauma Research Institute in collaboration with the SCI Network of Australia and New Zealand. Twenty-three experts participated, representing local and international research, clinical, consumer, advocacy, government policy and funding perspectives. Preparatory work synthesised evidence and articulated draft principles and options as a starting point for discussion. RESULTS: A regional SCI research strategy was proposed, whose objectives can be summarised under four themes. (1) Collaborative networks and strategic partnerships to increase efficiency, reduce duplication, build capacity and optimise research funding. (2) Research priority setting and coordination to manage competing studies. (3) Mechanisms for greater consumer engagement in research. (4) Resources and infrastructure to further develop SCI data registries, evaluate research translation and assess alignment of research strategy with stakeholder interests. These are consistent with contemporary international SCI research strategy development activities. CONCLUSION: This first step in a regional SCI research strategy has articulated objectives for further development by the wider SCI research community. The initiative has also reinforced the importance of coordinated, collective action in optimising outcomes following SCI.
-
ItemGait recovery following spinal cord injury in mice: Limited effect of treadmill trainingBattistuzzo, CR ; Rank, MM ; Flynn, JR ; Morgan, DL ; Callister, R ; Callister, RJ ; Galea, MP (TAYLOR & FRANCIS LTD, 2016-01-01)BACKGROUND: Several studies in rodents with complete spinal cord transections have demonstrated that treadmill training improves stepping movements. However, results from studies in incomplete spinal cord injured animals have been conflicting and questions regarding the training dosage after injury remain unresolved. OBJECTIVES: To assess the effects of treadmill-training regimen (20 minutes daily, 5 days a week) for 3, 6 or 9 weeks on the recovery of locomotion in hemisected SCI mice. METHODS: A randomized and blinded controlled experimental trial used a mouse model of incomplete spinal cord injury (SCI). After a left hemisection at T10, adult male mice were randomized to trained or untrained groups. The trained group commenced treadmill training one week after surgery and continued for 3, 6 or 9 weeks. Quantitative kinematic gait analysis was used to assess the spatiotemporal characteristics of the left hindlimb prior to injury and at 1, 4, 7 and 10 weeks post-injury. RESULTS: One week after injury there was no movement of the left hindlimb and some animals dragged their foot. Treadmill training led to significant improvements in step duration, but had limited effect on the hindlimb movement pattern. Locomotor improvements in trained animals were most evident at the hip and knee joints whereas recovery of ankle movement was limited, even after 9 weeks of treadmill training. CONCLUSION: These results demonstrate that treadmill training may lead to only modest improvement in recovery of hindlimb movement after incomplete spinal cord injury in mice.
-
ItemIs more always better? How different 'doses' of exercise after incomplete spinal cord injury affects the membrane properties of deep dorsal horn interneuronsRank, MM ; Galea, MP ; Callister, R ; Callister, RJ (ACADEMIC PRESS INC ELSEVIER SCIENCE, 2018-02-01)Interneurons in the deep dorsal horn (DDH) of the spinal cord process somatosensory input, and form an important link between upper and lower motoneurons to subsequently shape motor output. Exercise training after SCI is known to improve functional motor recovery, but little is known about the mechanisms within spinal cord neurons that underlie these improvements. Here we investigate how the properties of DDH interneurons are affected by spinal cord injury (SCI) alone, and SCI in combination with different 'doses' of treadmill exercise training (3, 6, and 9wks). In an adult mouse hemisection model of SCI we used whole-cell patch-clamp electrophysiology to record intrinsic, AP firing and gain modulation properties from DDH interneurons in a horizontal spinal cord slice preparation. We find that neurons within two segments of the injury, both ipsi- and contralateral to the hemisection, are similarly affected by SCI and SCI plus exercise. The passive intrinsic membrane properties input resistance (Rin) and rheobase are sensitive to the effects of recovery time and exercise training after SCI thus altering DDH interneuron excitability. Conversely, select active membrane properties are largely unaffected by either SCI or exercise training. SCI itself causes a mismatch in the expression of voltage-gated subthreshold currents and AP discharge firing type. Over time after SCI, and especially with exercise training (9wks), this mismatched expression is exacerbated. Lastly, amplification properties (i.e. gain of frequency-current relationship) of DDH interneurons are altered by SCI alone and recover spontaneously with no clear effect of exercise training. These results suggest a larger 'dose' of exercise training (9wks) has a strong and selective effect on specific membrane properties, and on the output of interneurons in the vicinity of a SCI. These electrophysiological data provide new insights into the plasticity of DDH interneurons and the mechanisms by which exercise therapy after SCI can improve recovery.
-
ItemRapid Assessment of Lipidomics Sample Purity and Quantity Using Fourier-Transform Infrared SpectroscopyRobinson, H ; Molendijk, J ; Shah, AK ; Rahman, T ; Anderson, GJ ; Hill, MM (MDPI, 2022-09-01)Despite the increasing popularity of liquid chromatography−mass spectrometry (LC-MS)-based lipidomics, there is a lack of accepted and validated methods for lipid extract quality and quantity assessment prior to LC-MS. Fourier-Transform Infrared Spectroscopy (FTIR) has been reported for quantification of pure lipids. However, the impact of complex lipid sample complexity and purity on total lipid quantification accuracy has not been investigated. Here, we report comprehensive assessment of the sample matrix on the accuracy of lipid quantification using Attenuated Total Reflectance (ATR)-FTIR and establish a simple workflow for lipidomics sample quantification. We show that both pure and complex lipids show characteristic FTIR vibrations of CH- and C=O-stretching vibrations, with a quantitative range of 40−3000 ng and a limit of detection of 12 ng, but sample extraction method and local baseline subtraction during FTIR spectral processing significantly impact lipid quantification via CH stretching. To facilitate sample quality screening, we developed the Lipid Quality (LiQ) score from a spectral library of common contaminants, using a ratio of peak heights between CH stretching vibrations maxima and the collective vibrations from amide/amine, CH-stretching minima and sugar moieties. Taking all tested parameters together, we propose a rapid FTIR workflow for routine lipidomics sample quality and quantity assessment and tested this workflow by comparing to the total LC-MS intensity of targeted lipidomics of 107 human plasma lipid extracts. Exclusion of poor-quality samples based on LiQ score improved the correlation between FTIR and LC-MS quantification. The uncertainty of absolute quantification by FTIR was estimated using a 795 ng SPLASH LipidoMix standard to be <10%. With low sample requirement, we anticipate this simple and rapid method will enhance lipidomics workflow by enabling accurate total lipid quantification and normalization of lipid quantity for MS analysis.
-
ItemHow and Why Diets Change Post-Migration: A Qualitative Exploration of Dietary Acculturation among Recent Chinese Immigrants in AustraliaLee, SD ; Kellow, NJ ; Huggins, CE ; Choi, TST (MDPI, 2022-09-01)Chinese immigrants living in Western countries are at increased risk for cardiometabolic diseases. Dietary acculturation has been implicated as a potential contributor, but little is known about why diets change post-migration. The purpose of this qualitative research study was to explore how and why diets change post-migration for Chinese immigrants living in Australia. Eleven participants undertook semi-structured interviews exploring and comparing their diets when they lived in China to their post-migration diets. Thematic analysis revealed that participants exhibited changed social structures of meal preparation, and made unacknowledged dietary changes, such as recipe modification, to maintain their traditional Chinese diet post-migration. Implications of both deliberate and unrecognized dietary changes post-migration include connections to increased risk for metabolic disease post-migration.
-
ItemOcular Lymphatic and Glymphatic Systems: Implications for Retinal Health and Disease.Uddin, N ; Rutar, M (MDPI AG, 2022-09-04)Clearance of ocular fluid and metabolic waste is a critical function of the eye in health and disease. The eye has distinct fluid outflow pathways in both the anterior and posterior segments. Although the anterior outflow pathway is well characterized, little is known about posterior outflow routes. Recent studies suggest that lymphatic and glymphatic systems play an important role in the clearance of fluid and waste products from the posterior segment of the eye. The lymphatic system is a vascular network that runs parallel to the blood circulatory system. It plays an essential role in maintenance of fluid homeostasis and immune surveillance in the body. Recent studies have reported lymphatics in the cornea (under pathological conditions), ciliary body, choroid, and optic nerve meninges. The evidence of lymphatics in optic nerve meninges is, however, limited. An alternative lymphatic system termed the glymphatic system was recently discovered in the rodent eye and brain. This system is a glial cell-based perivascular network responsible for the clearance of interstitial fluid and metabolic waste. In this review, we will discuss our current knowledge of ocular lymphatic and glymphatic systems and their role in retinal degenerative diseases.
-
ItemCognitive function with evolocumab in pediatric heterozygous familial hypercholesterolemia.Gaudet, D ; Ruzza, A ; Bridges, I ; Maruff, P ; Schembri, A ; Hamer, A ; Mach, F ; Bergeron, J ; Gaudet, I ; Pierre, JS ; Kastelein, JJP ; Hovingh, GK ; Wiegman, A ; Raal, FJ ; Santos, RD (Elsevier BV, 2022)BACKGROUND: Evolocumab is a fully human monoclonal antibody inhibitor of PCSK9 approved for lowering low-density lipoprotein cholesterol in adults and pediatric patients with familial hypercholesterolemia (FH). The cognitive safety of evolocumab has been established in adults but has not yet been described in pediatric patients. OBJECTIVE: To determine the effects of evolocumab on cognitive function in pediatric heterozygous FH. METHODS: Cognitive function was assessed during a 24-week, randomized, double-blind, placebo-controlled study (HAUSER-RCT) evaluating the efficacy, safety, and tolerability of 24 weeks of monthly subcutaneous injections of evolocumab in pediatric patients with FH. Cognitive safety endpoints included changes from baseline to week 24 in test scores in domains of psychomotor function, attention, visual learning, and executive function. Between-group differences in age-standardized mean test score changes were analyzed using analysis of covariance models and point estimates with 95% confidence interval (CI). Magnitudes of difference between treatment groups (Cohen's d) and reliable change indices were calculated for each cognitive function test. RESULTS: At week 24, changes from baseline in age-standardized cognitive test scores were similar between the treatment groups. Differences (95% CI) between the evolocumab and placebo groups in mean test score changes for the Groton Maze Learning, One-Card Learning, Identification, and Detection tests were 0.1 (-0.2, 0.4), -0.1 (-0.5, 0.4), 0.3 (0.0, 0.7), 0.3 (-0.1, 0.8), respectively. For all tests, abnormal and clinically important cognitive decline occurred with lesser frequency in the evolocumab group. CONCLUSION: In pediatric patients with FH, 24-week treatment with evolocumab did not negatively influence cognition. FUNDING: This study was funded and designed by Amgen.
-
ItemKidney omics in hypertension: from statistical associations to biological mechanisms and clinical applicationsTomaszewski, M ; Morris, AP ; Howson, JMM ; Franceschini, N ; Eales, JM ; Xu, X ; Dikalov, S ; Guzik, TJ ; Humphreys, BD ; Harrap, S ; Charchar, FJ (ELSEVIER SCIENCE INC, 2022-08-18)Hypertension is a major cardiovascular disease risk factor and contributor to premature death globally. Family-based investigations confirmed a significant heritable component of blood pressure (BP), whereas genome-wide association studies revealed >1000 common and rare genetic variants associated with BP and/or hypertension. The kidney is not only an organ of key relevance to BP regulation and the development of hypertension, but it also acts as the tissue mediator of genetic predisposition to hypertension. The identity of kidney genes, pathways, and related mechanisms underlying the genetic associations with BP has started to emerge through integration of genomics with kidney transcriptomics, epigenomics, and other omics as well as through applications of causal inference, such as Mendelian randomization. Single-cell methods further enabled mapping of BP-associated kidney genes to cell types, and in conjunction with other omics, started to illuminate the biological mechanisms underpinning associations of BP-associated genetic variants and kidney genes. Polygenic risk scores derived from genome-wide association studies and refined on kidney omics hold the promise of enhanced diagnostic prediction, whereas kidney omics-informed drug discovery is likely to contribute new therapeutic opportunities for hypertension and hypertension-mediated kidney damage.