Anatomy and Neuroscience - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 13
  • Item
    Thumbnail Image
    Psychometric deficits in autoimmune encephalitis: A retrospective study from the Australian Autoimmune Encephalitis Consortium
    Griffith, S ; Wesselingh, R ; Broadley, J ; O'Shea, M ; Kyndt, C ; Meade, C ; Long, B ; Seneviratne, U ; Reidy, N ; Bourke, R ; Buzzard, K ; D'Souza, W ; Macdonell, R ; Brodtmann, A ; Butzkueven, H ; O'Brien, TJ ; Alpitsis, R ; Malpas, CB ; Monif, M (WILEY, 2022-08)
    BACKGROUND AND PURPOSE: Despite the rapid increase in research examining outcomes in autoimmune encephalitis (AE) patients, there are few cohort studies examining cognitive outcomes in this population. The current study aimed to characterise psychometric outcomes in this population, and explore variables that may predict psychometric outcomes. METHODS: This retrospective observational study collected psychometric data from 59 patients across six secondary and tertiary referral centres in metropolitan hospitals in Victoria, Australia between January 2008 and July 2019. Frequency and pattern analysis were employed to define and characterize psychometric outcomes. Univariable logistic regression was performed to examine predictors of intact and pathological psychometric outcomes. RESULTS: Deficits in psychometric markers of executive dysfunction were the most common finding in this cohort, followed by deficits on tasks sensitive to memory. A total of 54.2% of patients were classified as having psychometric impairments across at least two cognitive domains. Twenty-nine patterns were observed, suggesting outcomes in AE are complex. None of the demographic data, clinical features or auxiliary examination variables were predictors of psychometric outcome. CONCLUSIONS: Cognitive outcomes in AE are complex. Further detailed and standardized cognitive testing, in combination with magnetic resonance imaging volumetrics and serum/cerebrospinal fluid biomarkers, is required to provide rigorous assessments of disease outcomes.
  • Item
    Thumbnail Image
    Inflammation, ictogenesis, and epileptogenesis: An exploration through human disease
    Tan, TH-L ; Perucca, P ; O'Brien, TJ ; Kwan, P ; Monif, M (WILEY, 2021-02)
    Epilepsy is seen historically as a disease of aberrant neuronal signaling manifesting as seizures. With the discovery of numerous auto-antibodies and the subsequent growth in understanding of autoimmune encephalitis, there has been an increasing emphasis on the contribution of the innate and adaptive immune system to ictogenesis and epileptogenesis. Pathogenic antibodies, complement activation, CD8+ cytotoxic T cells, and microglial activation are seen, to various degrees, in different seizure-associated neuroinflammatory and autoimmune conditions. These aberrant immune responses are thought to cause disruptions in neuronal signaling, generation of acute symptomatic seizures, and, in some cases, the development of long-term autoimmune epilepsy. Although early treatment with immunomodulatory therapies improves outcomes in autoimmune encephalitides and autoimmune epilepsies, patient identification and treatment selection are not always clear-cut. This review examines the role of the different components of the immune system in various forms of seizure disorders including autoimmune encephalitis, autoimmune epilepsy, Rasmussen encephalitis, febrile infection-related epilepsy syndrome (FIRES), and new-onset refractory status epilepticus (NORSE). In particular, the pathophysiology and unique cytokine profiles seen in these disorders and their links with diagnosis, prognosis, and treatment decision-making are discussed.
  • Item
    Thumbnail Image
    Seizures in autoimmune encephalitis: Kindling the fire
    Wesselingh, R ; Butzkueven, H ; Buzzard, K ; Tarlinton, D ; O'Brien, TJ ; Monif, M (WILEY, 2020-06)
    Epilepsy is a common neurological disorder that increases the risk of morbidity and mortality. Autoimmune epilepsy is a subset of epilepsy that occurs in the setting of autoimmunity, such as in autoimmune encephalitis (AIE). AIE is an autoimmune disorder characterized by immune-mediated neuroinflammation resulting in a variety of neurological symptoms, including psychiatric disturbance, cognitive dysfunction, and seizures. Seizures in AIE are thought to be a result of antibodies directed against neuronal cell-surface proteins involved in synaptic transmission. The role of blood-brain barrier dysfunction, myeloid cell infiltration, and the initiation of proinflammatory cascades in epileptogenesis has been shown to be important in animal models and human patients with epilepsy. Epileptogenesis in AIE is likely to arise from the synergistic effect of both innately driven neuroinflammation and antibody-induced hyperexcitability. Together, these processes produce persistent drug-resistant seizures that contribute to the morbidity seen in AIE. Understanding the proinflammatory pathways involved in this process may improve diagnostics and provide alternative treatment targets in AIE.
  • Item
    No Preview Available
    Patient Preferences for Time and Location of Infusible Therapies in Multiple Sclerosis and Neuroimmunologic Disorders.
    Rath, L ; Campagna, MP ; Stankovich, J ; Ellis, J ; Jokubaitis, V ; McCarthy, D ; Nesbitt, C ; Yeh, WZ ; Zhong, M ; Wesselingh, R ; Monif, M ; Richards, J ; Minh, VB ; Skibina, O ; Butzkueven, H ; van der Walt, A (Consortium of Multiple Sclerosis Centers, 2021)
    BACKGROUND: People with multiple sclerosis and neuroimmunologic disorders (herein referred to as patients) are increasingly treated with infusible monoclonal antibodies. This rise in demand has placed increased loads on current infusion services and mandates careful strategic planning. This study examined patient preferences for the timing and location of infusions and their association with demographic and disease variables to facilitate patient-focused strategic planning. METHODS: Ninety-one patients receiving an infusible therapy at an infusion service during March 2019 were asked to complete a questionnaire exploring eight domains, including preferences for time of infusions and location of infusion centers. Potential access to home-based treatment was included as an option. Unstructured (free-text) feedback on current service was also obtained. RESULTS: Eighty-three patients completed the survey (mean age, 42 years; 75% women). Infusions were predominantly natalizumab (66%) and ocrelizumab (25%). Of these patients, 71% were engaged in some form of work or study, and 83% of this group had to arrange time off from work or study to attend treatment. Seventy percent of patients would prefer their infusion before noon, and 60% would consider home-based infusions. Most used a car as their transport to the infusion service. CONCLUSIONS: These results suggest that patients are more likely to prefer infusible treatment in the morning and are open to home-based infusions. This study provides information for health services to target service delivery at peak preference times and consider alternate ways of delivering infusible treatments.
  • Item
    No Preview Available
    Fast and safe: Optimising multiple sclerosis infusions during COVID-19 pandemic
    Rath, L ; Bui, MV ; Ellis, J ; Carey, J ; Baker, J ; Taylor, L ; Fernando, H ; Taylor, N ; Savage, P ; Richards, J ; Zhong, M ; Kalincik, T ; Skibina, O ; Wesselingh, R ; Nguyen, A-L ; Monif, M ; Butzkueven, H ; van der Walt, A (ELSEVIER SCI LTD, 2021-01)
    BACKGROUND: The COVID-19 pandemic challenges multiple sclerosis services to be innovative in delivering infusible therapies. To reduce time in clinical settings, and potential staff or space losses, we implemented rapid infusion protocols for selected patients. OBJECTIVE: To analyse the rate of infusion related reactions and patient experience of rapid infusions of natalizumab and ocrelizumab. To document time reduction patients spent in clinical settings during the COVID-19 pandemic. METHODS: Patients with prior exposure to at least three natalizumab or two 300mg ocrelizumab infusions were approved for rapid protocols. A retrospective audit and survey were completed. RESULTS: We analysed 269 rapid natalizumab infusions and 100 rapid ocrelizumab infusions. Infusion related reactions during the natalizumab or ocrelizumab infusions occurred in two patients (1.52%) and eight patients (8%), respectively. All infusion related reactions were mild to moderate and did not require infusion discontinuation. No infusion reactions occurred during the post-infusion observation. Patient experience was positive. CONCLUSION: Frequency or severity of infusion related reactions in rapid infusions were no different compared to published data. In the setting of COVID-19, pandemic rapid infusion protocols could potentially save hospital resources and limit patient exposure to a high-risk clinical setting while still maintaining ongoing treatment of multiple sclerosis.
  • Item
    No Preview Available
    Evaluating the perspective of patients with MS and related conditions on their DMT in relation to the COVID-19 pandemic in one MS centre in Australia
    Seery, N ; Li, V ; Nguyen, A-L ; Roos, I ; Buzzard, KA ; Atvars, R ; Taylor, N ; Tunnell, K ; Carey, J ; Dwyer, C ; Taylor, HFL ; Baker, J ; Marriott, MP ; Kilpatrick, TJ ; Kalincik, T ; Monif, M (ELSEVIER SCI LTD, 2020-11-01)
    Objective: Patients with Multiple Sclerosis (MS) and on disease modifying therapies (DMTs) that can be immunosuppressive or immunomodulatory form a special group where risk of continuation of DMT needs to be taken into account with risk of contracting Covid-19. This concept can pose a degree of anxiety for patients as well as neurologists. We aimed to evaluate patient perspectives regarding the use of Natalizumab and anti-CD20 therapies (Rituximab and Ocrelizumab) in the context of the COVID-19 pandemic. Methods: cross-sectional study conducted via voluntary survey filled in by patients with MS and related disorders receiving their infusional treatment in one MS centre in Australia, exploring their concerns regarding their therapy, their therapy and COVID-19, precautions undertaken in response to the pandemic, and factors impacting their decision-making. Results: 170 patients completed the survey. Of patients on Natalizumab, the majority had either no or mild concern regarding their DMT and COVID-19, and of patients on B-cell depleting therapies, again, the majority had no or mild concern, though a slightly higher proportion had a moderate level of concern. Asked to delineate their concerns, an increased risk of contracting COVID-19 was more commonly conveyed than MS-specific factors or poor outcomes pertaining to COVID-19 if contracted, by patients in both groups. Conversely, being invited to specifically consider the possibility of contracting COVID-19 or experience a relapse of MS, almost half of the cohort rated both of equal of concern. More than half of the cohort were self-isolating more stringently than general government advice and government-related resources followed by information provided by patient's neurologist where the commonest means of information to guide decision making. Conclusions: Whilst a large proportion of patients had some concern regarding the impact of their DMT on COVID-19, whether on their risk of contracting COVID-19 or a theoretical risk for more severe disease, the overall level of concern in most cases was at most mild. Patients on B-cell depleting therapies were more inclined to express a higher level of concern. A similar concern was ascribed to a risk of a relapse or worsening MS symptoms compared to the risk of contracting COVID-19. Such attitudes may underscore a willingness of patients to continue their DMT where benefits outweigh risks during future phases of the COVID-19 pandemic.
  • Item
    Thumbnail Image
    Prognosis in autoimmune encephalitis: Database
    Broadley, J ; Seneviratne, U ; Beech, P ; Buzzard, K ; Butzkueven, H ; O'Brien, T ; Monif, M (ELSEVIER SCIENCE BV, 2018-12)
    Autoimmune encephalitis is a rare and debilitating disease. An important question in clinical neurology is what factors may be correlated with outcomes in autoimmune encephalitis. There is observational data describing statistical analyses on such variables, but there are no review articles that collaborate and interpret this information. This data in brief article represents the data collection for such a review (Broadley et al., 2018). Herein we summarize clinical information from 44 research articles, in particular pertaining to outcomes and prognostic variables.
  • Item
    Thumbnail Image
    Inhibition of purinergic P2X receptor 7 (P2X7R) decreases granulocyte-macrophage colony-stimulating factor (GM-CSF) expression in U251 glioblastoma cells
    Drill, M ; Powell, KL ; Kan, LK ; Jones, NC ; O'Brien, TJ ; Hamilton, JA ; Monif, M (NATURE RESEARCH, 2020-09-09)
    Glioblastoma is the most aggressive form of primary brain cancer, with a median survival of 12–15 months. The P2X receptor 7 (P2X7R) is upregulated in glioblastoma and is associated with increased tumor cell proliferation. The cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) is also upregulated in glioblastoma and has been shown to have both pro- and anti-tumor functions. This study investigates the potential mechanism linking P2X7R and GM-CSF in the U251 glioblastoma cell line and the therapeutic potential of P2X7R antagonism in this setting. P2X7R protein and mRNA was demonstrated to be expressed in the U251 cell line as assessed by immunocytochemistry and qPCR. Its channel function was intact as demonstrated by live cell confocal imaging using a calcium indicator Fluo-4 AM. Inhibition of P2X7R using antagonist AZ10606120, decreased both GM-CSF mRNA (P < 0.05) and protein (P < 0.01) measured by qPCR and ELISA respectively. Neutralization of GM-CSF with an anti-GM-CSF antibody did not alter U251 cell proliferation, however, P2X7R antagonism with AZ10606120 significantly reduced U251 glioblastoma cell numbers (P < 0.01). This study describes a novel link between P2X7R activity and GM-CSF expression in a human glioblastoma cell line and highlights the potential therapeutic benefit of P2X7R inhibition with AZ10606120 in glioblastoma.
  • Item
    Thumbnail Image
    Characterization of the human myelin oligodendrocyte glycoprotein antibody response in demyelination
    Tea, F ; Lopez, JA ; Ramanathan, S ; Merheb, V ; Lee, FXZ ; Zou, A ; Pilli, D ; Patrick, E ; van der Walt, A ; Monif, M ; Tantsis, EM ; Yiu, EM ; Vucic, S ; Henderson, APD ; Fok, A ; Fraser, CL ; Lechner-Scott, J ; Reddel, SW ; Broadley, S ; Barnett, MH ; Brown, DA ; Lunemann, JD ; Dale, RC ; Brilot, F ; Sinclair, A ; Kermode, AG ; Kornberg, A ; Bye, A ; McGettigan, B ; Trewin, B ; Brew, B ; Taylor, B ; Bundell, C ; Miteff, C ; Troedson, C ; Pridmore, C ; Spooner, C ; Yiannikas, C ; O'Gorman, C ; Clark, D ; Suan, D ; Jones, D ; Kilfoyle, D ; Gill, D ; Wakefield, D ; Hofmann, D ; Mathey, E ; O'Grady, G ; Jones, HF ; Beadnall, H ; Butzkueven, H ; Joshi, H ; Andrews, I ; Sutton, I ; MacIntyre, J ; Sandbach, JM ; Freeman, J ; King, J ; O'Neill, JH ; Parratt, J ; Barton, J ; Garber, J ; Ahmad, K ; Riney, K ; Buzzard, K ; Kothur, K ; Cantrill, LC ; Menezes, MP ; Paine, MA ; Marriot, M ; Ghadiri, M ; Boggild, M ; Lawlor, M ; Badve, M ; Ryan, M ; Aaqib, M ; Shuey, N ; Jordan, N ; Urriola, N ; Lawn, N ; White, O ; McCombe, P ; Patel, R ; Leventer, R ; Webster, R ; Smith, R ; Gupta, S ; Mohammad, SS ; Pillai, S ; Hawke, S ; Simon, S ; Calvert, S ; Blum, S ; Malone, S ; Hodgkinson, S ; Nguyen, TK ; Hardy, TA ; Kalincik, T ; Ware, T ; Fung, VSC ; Huynh, W (BMC, 2019-09-03)
    Over recent years, human autoantibodies targeting myelin oligodendrocyte glycoprotein (MOG Ab) have been associated with monophasic and relapsing central nervous system demyelination involving the optic nerves, spinal cord, and brain. While the clinical relevance of MOG Ab detection is becoming increasingly clear as therapeutic and prognostic differences from multiple sclerosis are acknowledged, an in-depth characterization of human MOG Ab is required to answer key challenges in patient diagnosis, treatment, and prognosis. Herein, we investigated the epitope, binding sensitivity, and affinity of MOG Ab in a cohort of 139 and 148 MOG antibody-seropositive children and adults (n = 287 patients at baseline, 130 longitudinal samples, and 22 cerebrospinal fluid samples). MOG extracellular domain was also immobilized to determine the affinity of MOG Ab. MOG Ab response was of immunoglobulin G1 isotype, and was of peripheral rather than intrathecal origin. High affinity MOG Ab were detected in 15% paediatric and 18% adult sera. More than 75% of paediatric and adult MOG Ab targeted a dominant extracellular antigenic region around Proline42. MOG Ab titers fluctuated over the progression of disease, but affinity and reactivity to Proline42 remained stable. Adults with a relapsing course intrinsically presented with a reduced immunoreactivity to Proline42 and had a more diverse MOG Ab response, a feature that may be harnessed for predicting relapse. Higher titers of MOG Ab were observed in more severe phenotypes and during active disease, supporting the pathogenic role of MOG Ab. Loss of MOG Ab seropositivity was observed upon conformational changes to MOG, and this greatly impacted the sensitivity of the detection of relapsing disorders, largely considered as more severe. Careful consideration of the binding characteristics of autoantigens should be taken into account when detecting disease-relevant autoantibodies.
  • Item
    Thumbnail Image
    The NLRP3 inflammasome in traumatic brain injury: potential as a biomarker and therapeutic target
    O'Brien, WT ; Pham, L ; Symons, GF ; Monif, M ; Shultz, SR ; McDonald, SJ (BMC, 2020-04-06)
    There is a great clinical need to identify the underlying mechanisms, as well as related biomarkers, and treatment targets, for traumatic brain injury (TBI). Neuroinflammation is a central pathophysiological feature of TBI. NLRP3 inflammasome activity is a necessary component of the innate immune response to tissue damage, and dysregulated inflammasome activity has been implicated in a number of neurological conditions. This paper introduces the NLRP3 inflammasome and its implication in the pathogenesis of neuroinflammatory-related conditions, with a particular focus on TBI. Although its role in TBI has only recently been identified, findings suggest that priming and activation of the NLRP3 inflammasome are upregulated following TBI. Moreover, recent studies utilizing specific NLRP3 inhibitors have provided further evidence that this inflammasome is a major driver of neuroinflammation and neurobehavioral disturbances following TBI. In addition, there is emerging evidence that circulating inflammasome-associated proteins may have utility as diagnostic biomarkers of neuroinflammatory conditions, including TBI. Finally, novel and promising areas of research will be highlighted, including the potential involvement of the NLRP3 inflammasome in mild TBI, how factors such as biological sex may affect NLRP3 activity in TBI, and the use of emerging biomarker platforms. Taken together, this review highlights the exciting potential of the NLRP3 inflammasome as a target for treatments and biomarkers that may ultimately be used to improve TBI management.