Anatomy and Neuroscience - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    A Continuum of Cell States Spans Pluripotency and Lineage Commitment in Human Embryonic Stem Cells
    Hough, SR ; Laslett, AL ; Grimmond, SB ; Kolle, G ; Pera, MF ; Reh, TA (PUBLIC LIBRARY SCIENCE, 2009-11-05)
    BACKGROUND: Commitment in embryonic stem cells is often depicted as a binary choice between alternate cell states, pluripotency and specification to a particular germ layer or extraembryonic lineage. However, close examination of human ES cell cultures has revealed significant heterogeneity in the stem cell compartment. METHODOLOGY/PRINCIPAL FINDINGS: We isolated subpopulations of embryonic stem cells using surface markers, then examined their expression of pluripotency genes and lineage specific transcription factors at the single cell level, and tested their ability to regenerate colonies of stem cells. Transcript analysis of single embryonic stem cells showed that there is a gradient and a hierarchy of expression of pluripotency genes in the population. Even cells at the top of the hierarchy generally express only a subset of the stem cell genes studied. Many cells co-express pluripotency and lineage specific genes. Cells along the continuum show a progressively decreasing likelihood of self renewal as their expression of stem cell surface markers and pluripotency genes wanes. Most cells that are positive for stem cell surface markers express Oct-4, but only those towards the top of the hierarchy express the nodal receptor TDGF-1 and the growth factor GDF3. SIGNIFICANCE: These findings on gene expression in single embryonic stem cells are in concert with recent studies of early mammalian development, which reveal molecular heterogeneity and a stochasticity of gene expression in blastomeres. Our work indicates that only a small fraction of the population resides at the top of the hierarchy, that lineage priming (co-expression of stem cell and lineage specific genes) characterizes pluripotent stem cell populations, and that extrinsic signaling pathways are upstream of transcription factor networks that control pluripotency.
  • Item
    Thumbnail Image
    Transcriptional analysis of early lineage commitment in human embryonic stem cells
    Laslett, AL ; Grimmond, S ; Gardiner, B ; Stamp, L ; Lin, A ; Hawes, SM ; Wormald, S ; Nikolic-Paterson, D ; Haylock, D ; Pera, MF (BMC, 2007-03-02)
    BACKGROUND: The mechanisms responsible for the maintenance of pluripotency in human embryonic stem cells, and those that drive their commitment into particular differentiation lineages, are poorly understood. In fact, even our knowledge of the phenotype of hESC is limited, because the immunological and molecular criteria presently used to define this phenotype describe the properties of a heterogeneous population of cells. RESULTS: We used a novel approach combining immunological and transcriptional analysis (immunotranscriptional profiling) to compare gene expression in hESC populations at very early stages of differentiation. Immunotranscriptional profiling enabled us to identify novel markers of stem cells and their differentiated progeny, as well as novel potential regulators of hESC commitment and differentiation. The data show clearly that genes associated with the pluripotent state are downregulated in a coordinated fashion, and that they are co-expressed with lineage specific transcription factors in a continuum during the early stages of stem cell differentiation. CONCLUSION: These findings, that show that maintenance of pluripotency and lineage commitment are dynamic, interactive processes in hESC cultures, have important practical implications for propagation and directed differentiation of these cells, and for the interpretation of mechanistic studies of hESC renewal and commitment. Since embryonic stem cells at defined stages of commitment can be isolated in large numbers by immunological means, they provide a powerful model for studying molecular genetics of stem cell commitment in the embryo.