Anatomy and Neuroscience - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 228
  • Item
    Thumbnail Image
    Diacetylbis(N(4)-methylthiosemicarbazonato) Copper(II) (CuII(atsm)) Protects against Peroxynitrite-induced Nitrosative Damage and Prolongs Survival in Amyotrophic Lateral Sclerosis Mouse Model
    Soon, CPW ; Donnelly, PS ; Turner, BJ ; Hung, LW ; Crouch, PJ ; Sherratt, NA ; Tan, J-L ; Lim, NK-H ; Lam, L ; Bica, L ; Lim, S ; Hickey, JL ; Morizzi, J ; Powell, A ; Finkelstein, DI ; Culvenor, JG ; Masters, CL ; Duce, J ; White, AR ; Barnham, KJ ; Li, Q-X (AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC, 2011-12-23)
    Amyotrophic lateral sclerosis (ALS) is a progressive paralyzing disease characterized by tissue oxidative damage and motor neuron degeneration. This study investigated the in vivo effect of diacetylbis(N(4)-methylthiosemicarbazonato) copper(II) (CuII(atsm)), which is an orally bioavailable, blood-brain barrier-permeable complex. In vitro the compound inhibits the action of peroxynitrite on Cu,Zn-superoxide dismutase (SOD1) and subsequent nitration of cellular proteins. Oral treatment of transgenic SOD1G93A mice with CuII(atsm) at presymptomatic and symptomatic ages was performed. The mice were examined for improvement in lifespan and motor function, as well as histological and biochemical changes to key disease markers. Systemic treatment of SOD1G93A mice significantly delayed onset of paralysis and prolonged lifespan, even when administered to symptomatic animals. Consistent with the properties of this compound, treated mice had reduced protein nitration and carbonylation, as well as increased antioxidant activity in spinal cord. Treatment also significantly preserved motor neurons and attenuated astrocyte and microglial activation in mice. Furthermore, CuII(atsm) prevented the accumulation of abnormally phosphorylated and fragmented TAR DNA-binding protein-43 (TDP-43) in spinal cord, a protein pivotal to the development of ALS. CuII(atsm) therefore represents a potential new class of neuroprotective agents targeting multiple major disease pathways of motor neurons with therapeutic potential for ALS.
  • Item
    Thumbnail Image
    Early Development of Electrical Excitability in the Mouse Enteric Nervous System
    Hao, MM ; Lomax, AE ; McKeown, SJ ; Reid, CA ; Young, HM ; Bornstein, JC (SOC NEUROSCIENCE, 2012-08-08)
    Neural activity is integral to the development of the enteric nervous system (ENS). A subpopulation of neural crest-derived cells expresses pan-neuronal markers at early stages of ENS development (at E10.5 in the mouse). However, the electrical activity of these cells has not been previously characterized, and it is not known whether all cells expressing neuronal markers are capable of firing action potentials (APs). In this study, we examined the activity of "neuron"-like cells (expressing pan-neuronal markers or with neuronal morphology) in the gut of E11.5 and E12.5 mice using whole-cell patch-clamp electrophysiology and compared them to the activity of neonatal and adult enteric neurons. Around 30-40% of neuron-like cells at E11.5 and E12.5 fired APs, some of which were very similar to those of adult enteric neurons. All APs were sensitive to tetrodotoxin (TTX), indicating that they were driven by voltage-gated Na+ currents. Expression of mRNA encoding several voltage-gated Na+ channels by the E11.5 gut was detected using RT-PCR. The density of voltage-gated Na+ currents increased from E11.5 to neonates. Immature active responses, mediated in part by TTX- and lidocaine-insensitive channels, were observed in most cells at E11.5 and E12.5, but not in P0/P1 or adult neurons. However, some cells expressing neuronal markers at E11.5 or E12.5 did not exhibit an active response to depolarization. Spontaneous depolarizations resembling excitatory postsynaptic potentials were observed at E12.5. The ENS is one of the earliest parts of the developing nervous system to exhibit mature forms of electrical activity.
  • Item
    Thumbnail Image
    N-Glycosylation Determines Ionic Permeability and Desensitization of the TRPV1 Capsaicin Receptor
    Veldhuis, NA ; Lew, MJ ; Abogadie, FC ; Poole, DP ; Jennings, EA ; Ivanusic, JJ ; Eilers, H ; Bunnett, NW ; McIntyre, P (AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC, 2012-06-22)
    The balance of glycosylation and deglycosylation of ion channels can markedly influence their function and regulation. However, the functional importance of glycosylation of the TRPV1 receptor, a key sensor of pain-sensing nerves, is not well understood, and whether TRPV1 is glycosylated in neurons is unclear. We report that TRPV1 is N-glycosylated and that N-glycosylation is a major determinant of capsaicin-evoked desensitization and ionic permeability. Both N-glycosylated and unglycosylated TRPV1 was detected in extracts of peripheral sensory nerves by Western blotting. TRPV1 expressed in HEK-293 cells exhibited various degrees of glycosylation. A mutant of asparagine 604 (N604T) was not glycosylated but did not alter plasma membrane expression of TRPV1. Capsaicin-evoked increases in intracellular calcium ([Ca(2+)](i)) were sustained in wild-type TRPV1 HEK-293 cells but were rapidly desensitized in N604T TRPV1 cells. There was marked cell-to-cell variability in capsaicin responses and desensitization between individual cells expressing wild-type TRPV1 but highly uniform responses in cells expressing N604T TRPV1, consistent with variable levels of glycosylation of the wild-type channel. These differences were also apparent when wild-type or N604T TRPV1-GFP fusion proteins were expressed in neurons from trpv1(-/-) mice. Capsaicin evoked a marked, concentration-dependent increase in uptake of the large cationic dye YO-PRO-1 in cells expressing wild-type TRPV1, indicative of loss of ion selectivity, that was completely absent in cells expressing N604T TRPV1. Thus, TRPV1 is variably N-glycosylated and glycosylation is a key determinant of capsaicin regulation of TRPV1 desensitization and permeability. Our findings suggest that physiological or pathological alterations in TRPV1 glycosylation would affect TRPV1 function and pain transmission.
  • Item
    Thumbnail Image
    Cellular Up-regulation of Nedd4 Family Interacting Protein 1 (Ndfip1) using Low Levels of Bioactive Cobalt Complexes
    Schieber, C ; Howitt, J ; Putz, U ; White, JM ; Parish, CL ; Donnelly, PS ; Tan, S-S (AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC, 2011-03-11)
    The delivery of metal ions using cell membrane-permeable metal complexes represents a method for activating cellular pathways. Here, we report the synthesis and characterization of new [Co(III)(salen)(acac)] complexes capable of up-regulating the ubiquitin ligase adaptor protein Ndfip1. Ndfip1 is a neuroprotective protein that is up-regulated in the brain after injury and functions in combination with Nedd4 ligases to ubiquitinate harmful proteins for removal. We previously showed that Ndfip1 can be increased in human neurons using CoCl(2) that is toxic at high concentration. Here we demonstrate a similar effect can be achieved by low concentrations of synthetic Co(III) complexes that are non-toxic and designed to be activated following cellular entry. Activation is achieved by intracellular reduction of Co(III) to Co(II) leading to release of Co(II) ions for Ndfip1 up-regulation. The cellular benefit of Ndfip1 up-regulation by Co(III) complexes includes demonstrable protection against cell death in SH-SY5Y cells during stress. In vivo, focal delivery of Co(III) complexes into the adult mouse brain was observed to up-regulate Ndfip1 in neurons. These results demonstrate that a cellular response pathway can be advantageously manipulated by chemical modification of metal complexes, and represents a significant step of harnessing low concentration metal complexes for therapeutic benefit.
  • Item
    Thumbnail Image
    Lesions of the Basal Forebrain Cholinergic System in Mice Disrupt Idiothetic Navigation
    Hamlin, AS ; Windels, F ; Boskovic, Z ; Sah, P ; Coulson, EJ ; Ginsberg, SD (PUBLIC LIBRARY SCIENCE, 2013-01-08)
    Loss of integrity of the basal forebrain cholinergic neurons is a consistent feature of Alzheimer's disease, and measurement of basal forebrain degeneration by magnetic resonance imaging is emerging as a sensitive diagnostic marker for prodromal disease. It is also known that Alzheimer's disease patients perform poorly on both real space and computerized cued (allothetic) or uncued (idiothetic) recall navigation tasks. Although the hippocampus is required for allothetic navigation, lesions of this region only mildly affect idiothetic navigation. Here we tested the hypothesis that the cholinergic medial septo-hippocampal circuit is important for idiothetic navigation. Basal forebrain cholinergic neurons were selectively lesioned in mice using the toxin saporin conjugated to a basal forebrain cholinergic neuronal marker, the p75 neurotrophin receptor. Control animals were able to learn and remember spatial information when tested on a modified version of the passive place avoidance test where all extramaze cues were removed, and animals had to rely on idiothetic signals. However, the exploratory behaviour of mice with cholinergic basal forebrain lesions was highly disorganized during this test. By contrast, the lesioned animals performed no differently from controls in tasks involving contextual fear conditioning and spatial working memory (Y maze), and displayed no deficits in potentially confounding behaviours such as motor performance, anxiety, or disturbed sleep/wake cycles. These data suggest that the basal forebrain cholinergic system plays a specific role in idiothetic navigation, a modality that is impaired early in Alzheimer's disease.
  • Item
    Thumbnail Image
    Consumption of a low glycaemic index diet in late life extends lifespan of Balb/c mice with differential effects on DNA damage.
    Nankervis, SA ; Mitchell, JM ; Charchar, FJ ; McGlynn, MA ; Lewandowski, PA (Springer Science and Business Media LLC, 2013-03-01)
    BACKGROUND: Caloric restriction is known to extend the lifespan of all organisms in which it has been tested. Consequently, current research is investigating the role of various foods to improve health and lifespan. The role of various diets has received less attention however, and in some cases may have more capacity to improve health and longevity than specific foods alone. We examined the benefits to longevity of a low glycaemic index (GI) diet in aged Balb/c mice and examined markers of oxidative stress and subsequent effects on telomere dynamics. RESULTS: In an aged population of mice, a low GI diet extended average lifespan by 12%, improved glucose tolerance and had impressive effects on amelioration of oxidative damage to DNA in white blood cells. Telomere length in quadriceps muscle showed no improvement in the dieted group, nor was telomerase reactivated. CONCLUSION: The beneficial effects of a low GI diet are evident from the current study and although the impact to telomere dynamics late in life is minimal, we expect that earlier intervention with a low GI diet would provide significant improvement in health and longevity with associated effects to telomere homeostasis.
  • Item
    Thumbnail Image
    Association of genetic variation with systolic and diastolic blood pressure among African Americans: the Candidate Gene Association Resource study
    Fox, ER ; Young, JH ; Li, Y ; Dreisbach, AW ; Keating, BJ ; Musani, SK ; Liu, K ; Morrison, AC ; Ganesh, S ; Kutlar, A ; Ramachandran, VS ; Polak, JF ; Fabsitz, RR ; Dries, DL ; Farlow, DN ; Redline, S ; Adeyemo, A ; Hirschorn, JN ; Sun, YV ; Wyatt, SB ; Penman, AD ; Palmas, W ; Rotter, JI ; Townsend, RR ; Doumatey, AP ; Tayo, BO ; Mosley, TH ; Lyon, HN ; Kang, SJ ; Rotimi, CN ; Cooper, RS ; Franceschini, N ; Curb, JD ; Martin, LW ; Eaton, CB ; Kardia, SLR ; Taylor, HA ; Caulfield, MJ ; Ehret, GB ; Johnson, T ; Chakravarti, A ; Zhu, X ; Levy, D (OXFORD UNIV PRESS, 2011-06-01)
    The prevalence of hypertension in African Americans (AAs) is higher than in other US groups; yet, few have performed genome-wide association studies (GWASs) in AA. Among people of European descent, GWASs have identified genetic variants at 13 loci that are associated with blood pressure. It is unknown if these variants confer susceptibility in people of African ancestry. Here, we examined genome-wide and candidate gene associations with systolic blood pressure (SBP) and diastolic blood pressure (DBP) using the Candidate Gene Association Resource (CARe) consortium consisting of 8591 AAs. Genotypes included genome-wide single-nucleotide polymorphism (SNP) data utilizing the Affymetrix 6.0 array with imputation to 2.5 million HapMap SNPs and candidate gene SNP data utilizing a 50K cardiovascular gene-centric array (ITMAT-Broad-CARe [IBC] array). For Affymetrix data, the strongest signal for DBP was rs10474346 (P= 3.6 × 10(-8)) located near GPR98 and ARRDC3. For SBP, the strongest signal was rs2258119 in C21orf91 (P= 4.7 × 10(-8)). The top IBC association for SBP was rs2012318 (P= 6.4 × 10(-6)) near SLC25A42 and for DBP was rs2523586 (P= 1.3 × 10(-6)) near HLA-B. None of the top variants replicated in additional AA (n = 11 882) or European-American (n = 69 899) cohorts. We replicated previously reported European-American blood pressure SNPs in our AA samples (SH2B3, P= 0.009; TBX3-TBX5, P= 0.03; and CSK-ULK3, P= 0.0004). These genetic loci represent the best evidence of genetic influences on SBP and DBP in AAs to date. More broadly, this work supports that notion that blood pressure among AAs is a trait with genetic underpinnings but also with significant complexity.
  • Item
    No Preview Available
    Identification of New and Diverse Inducers of Fetal Hemoglobin with High Throughput Screening (HTS)
    Sangerman, JI ; Boosalis, MS ; Shen, L ; Haigh, S ; Kane, A ; White, GL ; Perrine, SP ; Faller, DV (American Society of Hematology, 2010-11-19)
    Pharmacologic augmentation of fetal hemoglobin (HbF, γ-globin) production, to replace diminished β-globin chains in the β-thalassemias and to inhibit HbS polymerization in sickle cell disease, is a definitive therapeutic modality. Despite long-term efforts, regulatory approval has been obtained for only one chemotherapeutic agent. Pharmacologic reactivation of high-level HbF expression with non-cytotoxic, tolerable therapeutics is still an unmet medical need for this global health burden. To investigate potential therapeutic libraries for unrecognized HbF inducers, we developed a high-throughput screening (HTS) program to interrogate diverse chemical libraries, including a library of FDA-approved and clinical stage drugs. This program has identified unexpected new and highly potent HbF-inducing drugs, some of which are already in clinical use for other medical indications and have established safety profiles. A human cell-based assay which was previously used in low throughput assays, utilizing a 1.4-kilobase (kb) KpnI-BglII fragment of the HS2 of the locus control region (LCR) linked to the γ-globin gene promoter and the enhanced green fluorescent protein (EGFP) reporter gene, was adapted for high throughput screening and employed as the primary screen. Cytotoxic activity was assayed in a simultaneous counter screen. A number of hits were identified as being more potent than positive controls (such as butyrate). Several hits were immediately eliminated from further development as potential hemoglobinopathy therapeutics because of cytotoxicity (e.g., Idarubicin) or undesirable off-target effects, but nonetheless validated the HTS itself and were validated in secondary confirmatory assays as highly-potent HbF-inducers. The HTS assay identified 8 FDA-approved drugs as potent inducers of γ-globin gene expression, with activity at 1–2 logs lower concentrations (1000-fold higher potency) than prior generation therapeutic candidates. The γ-globin-specificity of hits was determined in a secondary assay employing a stably-transfected dual-luciferase reporter construct containing the LCR and the β-globin promoter linked to renilla luciferase and the Aγ-globin promoter linked to firefly luciferase (μLCRβprRlucAγprFluc cassette). Clinical-stage or clinically-approved agents, including Ambroxol at 1 μM, Desloratadine at 1 μM, Resveratrol at 10 μM, Benserazide at 5 μM, the HDAC inhibitor MS-275 at 5 μM, and an established bioactive, NSC-95397, at 1 μM were all significantly more active in this assay than Butyrate at 2000 μM, with MS-275 and Resveratrol being the most active. These drugs were then assayed for their ability to induce γ-globin mRNA expression in cultured primary human erythroid progenitors, at concentrations which are pharmacologically achievable in humans. Drugs significantly more active in γ -globin mRNA induction than the positive control (2-fold induction) in this system included Ambroxol (3-fold), Desloratadine (up to 6-fold), Resveratrol (up to 3-fold), Benserazide (up to 5-fold), and MS-275 (up to 3.7-fold). Two agents were subsequently studied in anemic baboons, and demonstrated in vivo induction of γ-globin mRNA, HbF, and F-reticulocytes. Unexpectedly, rises in total hemoglobin (>1 gm/dL) also occurred with 2 agents. Thus, a panel of structurally- and functionally-unrelated compounds demonstrate greater HbF-inducing activity, with up to 1000-fold higher potency, than current HbF-inducers which have significant activity in clinical trials. Some of the drugs identified by HTS have entirely benign safety profiles. These candidates could be clinically evaluated rapidly and at significantly less cost than new chemical entities, which require extensive toxicology, manufacturing, and clinical evaluation. These findings demonstrate the utility of a high-throughput screening program based on γ-globin gene promoter induction.
  • Item
    Thumbnail Image
    Cell Type-Specific Thalamic Innervation in a Column of Rat Vibrissal Cortex
    Meyer, HS ; Wimmer, VC ; Hemberger, M ; Bruno, RM ; de Kock, CPJ ; Frick, A ; Sakmann, B ; Helmstaedter, M (OXFORD UNIV PRESS INC, 2010-10)
    This is the concluding article in a series of 3 studies that investigate the anatomical determinants of thalamocortical (TC) input to excitatory neurons in a cortical column of rat primary somatosensory cortex (S1). We used viral synaptophysin-enhanced green fluorescent protein expression in thalamic neurons and reconstructions of biocytin-labeled cortical neurons in TC slices to quantify the number and distribution of boutons from the ventral posterior medial (VPM) and posteromedial (POm) nuclei potentially innervating dendritic arbors of excitatory neurons located in layers (L)2-6 of a cortical column in rat somatosensory cortex. We found that 1) all types of excitatory neurons potentially receive substantial TC input (90-580 boutons per neuron); 2) pyramidal neurons in L3-L6 receive dual TC input from both VPM and POm that is potentially of equal magnitude for thick-tufted L5 pyramidal neurons (ca. 300 boutons each from VPM and POm); 3) L3, L4, and L5 pyramidal neurons have multiple (2-4) subcellular TC innervation domains that match the dendritic compartments of pyramidal cells; and 4) a subtype of thick-tufted L5 pyramidal neurons has an additional VPM innervation domain in L4. The multiple subcellular TC innervation domains of L5 pyramidal neurons may partly explain their specific action potential patterns observed in vivo. We conclude that the substantial potential TC innervation of all excitatory neuron types in a cortical column constitutes an anatomical basis for the initial near-simultaneous representation of a sensory stimulus in different neuron types.
  • Item
    Thumbnail Image
    Number and Laminar Distribution of Neurons in a Thalamocortical Projection Column of Rat Vibrissal Cortex
    Meyer, HS ; Wimmer, VC ; Oberlaender, M ; de Kock, CPJ ; Sakmann, B ; Helmstaedter, M (OXFORD UNIV PRESS INC, 2010-10)
    This is the second article in a series of three studies that investigate the anatomical determinants of thalamocortical (TC) input to excitatory neurons in a cortical column of rat primary somatosensory cortex (S1). Here, we report the number and distribution of NeuN-positive neurons within the C2, D2, and D3 TC projection columns in P27 rat somatosensory barrel cortex based on an exhaustive identification of 89,834 somata in a 1.15 mm(3) volume of cortex. A single column contained 19,109 ± 444 neurons (17,560 ± 399 when normalized to a standard-size projection column). Neuron density differences along the vertical column axis delineated "cytoarchitectonic" layers. The resulting neuron numbers per layer in the average column were 63 ± 10 (L1), 2039 ± 524 (L2), 3735 ± 905 (L3), 4447 ± 439 (L4), 1737 ± 251 (L5A), 2235 ± 99 (L5B), 3786 ± 168 (L6A), and 1066 ± 170 (L6B). These data were then used to derive the layer-specific action potential (AP) output of a projection column. The estimates confirmed previous reports suggesting that the ensembles of spiny L4 and thick-tufted pyramidal neurons emit the major fraction of APs of a column. The number of APs evoked in a column by a sensory stimulus (principal whisker deflection) was estimated as 4441 within 100 ms post-stimulus.