Anatomy and Neuroscience - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 1492
  • Item
    Thumbnail Image
    MiMIC analysis reveals an isoform specific role for Drosophila Musashi in follicle stem cell maintenance and escort cell function
    Siddall, NA ; Casagranda, F ; Johanson, TM ; Dominado, N ; Heaney, J ; Sutherland, JM ; McLaughlin, EA ; Hime, GR (SPRINGERNATURE, 2022-11-12)
    The Drosophila ovary is regenerated from germline and somatic stem cell populations that have provided fundamental conceptual understanding on how adult stem cells are regulated within their niches. Recent ovarian transcriptomic studies have failed to identify mRNAs that are specific to follicle stem cells (FSCs), suggesting that their fate may be regulated post-transcriptionally. We have identified that the RNA-binding protein, Musashi (Msi) is required for maintaining the stem cell state of FSCs. Loss of msi function results in stem cell loss, due to a change in differentiation state, indicated by upregulation of Lamin C in the stem cell population. In msi mutant ovaries, Lamin C upregulation was also observed in posterior escort cells that interact with newly formed germ cell cysts. Mutant somatic cells within this region were dysfunctional, as evidenced by the presence of germline cyst collisions, fused egg chambers and an increase in germ cell cyst apoptosis. The msi locus produces two classes of mRNAs (long and short). We show that FSC maintenance and escort cell function specifically requires the long transcripts, thus providing the first evidence of isoform-specific regulation in a population of Drosophila epithelial cells. We further demonstrate that although male germline stem cells have previously been shown to require Msi function to prevent differentiation this is not the case for female germline stem cells, indicating that these similar stem cell types have different requirements for Msi, in addition to the differential use of Msi isoforms between soma and germline. In summary, we show that different isoforms of the Msi RNA-binding protein are expressed in specific cell populations of the ovarian stem cell niche where Msi regulates stem cell differentiation, niche cell function and subsequent germ cell survival and differentiation.
  • Item
    Thumbnail Image
    Retinal ganglion cell-specific genetic regulation in primary open-angle glaucoma.
    Daniszewski, M ; Senabouth, A ; Liang, HH ; Han, X ; Lidgerwood, GE ; Hernández, D ; Sivakumaran, P ; Clarke, JE ; Lim, SY ; Lees, JG ; Rooney, L ; Gulluyan, L ; Souzeau, E ; Graham, SL ; Chan, C-L ; Nguyen, U ; Farbehi, N ; Gnanasambandapillai, V ; McCloy, RA ; Clarke, L ; Kearns, LS ; Mackey, DA ; Craig, JE ; MacGregor, S ; Powell, JE ; Pébay, A ; Hewitt, AW (Elsevier BV, 2022-06-08)
    To assess the transcriptomic profile of disease-specific cell populations, fibroblasts from patients with primary open-angle glaucoma (POAG) were reprogrammed into induced pluripotent stem cells (iPSCs) before being differentiated into retinal organoids and compared with those from healthy individuals. We performed single-cell RNA sequencing of a total of 247,520 cells and identified cluster-specific molecular signatures. Comparing the gene expression profile between cases and controls, we identified novel genetic associations for this blinding disease. Expression quantitative trait mapping identified a total of 4,443 significant loci across all cell types, 312 of which are specific to the retinal ganglion cell subpopulations, which ultimately degenerate in POAG. Transcriptome-wide association analysis identified genes at loci previously associated with POAG, and analysis, conditional on disease status, implicated 97 statistically significant retinal ganglion cell-specific expression quantitative trait loci. This work highlights the power of large-scale iPSC studies to uncover context-specific profiles for a genetically complex disease.
  • Item
    Thumbnail Image
    Consensus guidelines for sarcopenia prevention, diagnosis and management in Australia and New Zealand
    Zanker, J ; Sim, M ; Anderson, K ; Balogun, S ; Brennan-Olsen, SL ; Dent, E ; Duque, G ; Girgis, CM ; Grossmann, M ; Hayes, A ; Henwood, T ; Hirani, V ; Inderjeeth, C ; Iuliano, S ; Keogh, J ; Lewis, J ; Lynch, GS ; Pasco, JA ; Phu, S ; Reijnierse, EM ; Russell, N ; Vlietstra, L ; Visvanathan, R ; Walker, T ; Waters, DL ; Yu, S ; Maier, AB ; Daly, RM ; Scott, D (WILEY, 2022-11-09)
    BACKGROUND: Sarcopenia is an age-associated skeletal muscle condition characterized by low muscle mass, strength, and physical performance. There is no international consensus on a sarcopenia definition and no contemporaneous clinical and research guidelines specific to Australia and New Zealand. The Australian and New Zealand Society for Sarcopenia and Frailty Research (ANZSSFR) Sarcopenia Diagnosis and Management Task Force aimed to develop consensus guidelines for sarcopenia prevention, assessment, management and research, informed by evidence, consumer opinion, and expert consensus, for use by health professionals and researchers in Australia and New Zealand. METHODS: A four-phase modified Delphi process involving topic experts and informed by consumers, was undertaken between July 2020 and August 2021. Phase 1 involved a structured meeting of 29 Task Force members and a systematic literature search from which the Phase 2 online survey was developed (Qualtrics). Topic experts responded to 18 statements, using 11-point Likert scales with agreement threshold set a priori at >80%, and five multiple-choice questions. Statements with moderate agreement (70%-80%) were revised and re-introduced in Phase 3, and statements with low agreement (<70%) were rejected. In Phase 3, topic experts responded to six revised statements and three additional questions, incorporating results from a parallel Consumer Expert Delphi study. Phase 4 involved finalization of consensus statements. RESULTS: Topic experts from Australia (n = 62, 92.5%) and New Zealand (n = 5, 7.5%) with a mean ± SD age of 45.7 ± 11.8 years participated in Phase 2; 38 (56.7%) were women, 38 (56.7%) were health professionals and 27 (40.3%) were researchers/academics. In Phase 2, 15 of 18 (83.3%) statements on sarcopenia prevention, screening, assessment, management and future research were accepted with strong agreement. The strongest agreement related to encouraging a healthy lifestyle (100%) and offering tailored resistance training to people with sarcopenia (92.5%). Forty-seven experts participated in Phase 3; 5/6 (83.3%) revised statements on prevention, assessment and management were accepted with strong agreement. A majority of experts (87.9%) preferred the revised European Working Group for Sarcopenia in Older Persons (EWGSOP2) definition. Seventeen statements with strong agreement (>80%) were confirmed by the Task Force in Phase 4. CONCLUSIONS: The ANZSSFR Task Force present 17 sarcopenia management and research recommendations for use by health professionals and researchers which includes the recommendation to adopt the EWGSOP2 sarcopenia definition in Australia and New Zealand. This rigorous Delphi process that combined evidence, consumer expert opinion and topic expert consensus can inform similar initiatives in countries/regions lacking consensus on sarcopenia.
  • Item
    Thumbnail Image
    Group I Metabotropic Glutamate Receptors Modulate Motility and Enteric Neural Activity in the Mouse Colon
    Leembruggen, AJL ; Lu, Y ; Wang, H ; Uzungil, V ; Renoir, T ; Hannan, AJJ ; Stamp, LAA ; Hao, MMM ; Bornstein, JCC (MDPI, 2023-01-01)
    Glutamate is the major excitatory neurotransmitter in the central nervous system, and there is evidence that Group-I metabotropic glutamate receptors (mGlu1 and mGlu5) have established roles in excitatory neurotransmission and synaptic plasticity. While glutamate is abundantly present in the gut, it plays a smaller role in neurotransmission in the enteric nervous system. In this study, we examined the roles of Group-I mGlu receptors in gastrointestinal function. We investigated the expression of Grm1 (mGlu1) and Grm5 (mGlu5) in the mouse myenteric plexus using RNAscope in situ hybridization. Live calcium imaging and motility analysis were performed on ex vivo preparations of the mouse colon. mGlu5 was found to play a role in excitatory enteric neurotransmission, as electrically-evoked calcium transients were sensitive to the mGlu5 antagonist MPEP. However, inhibition of mGlu5 activity did not affect colonic motor complexes (CMCs). Instead, inhibition of mGlu1 using BAY 36-7620 reduced CMC frequency but did not affect enteric neurotransmission. These data highlight complex roles for Group-I mGlu receptors in myenteric neuron activity and colonic function.
  • Item
    Thumbnail Image
    Proteome-wide systems genetics identifies UFMylation as a regulator of skeletal muscle function
    Molendijk, J ; Blazev, R ; Mills, RJ ; Ng, Y-K ; Watt, K ; Chau, D ; Gregorevic, P ; Crouch, PJ ; Hilton, JBW ; Lisowski, L ; Zhang, P ; Reue, K ; Lusis, AJ ; Hudson, JE ; James, DE ; Seldin, MM ; Parker, BL (eLIFE SCIENCES PUBL LTD, 2022-12-06)
    Improving muscle function has great potential to improve the quality of life. To identify novel regulators of skeletal muscle metabolism and function, we performed a proteomic analysis of gastrocnemius muscle from 73 genetically distinct inbred mouse strains, and integrated the data with previously acquired genomics and >300 molecular/phenotypic traits via quantitative trait loci mapping and correlation network analysis. These data identified thousands of associations between protein abundance and phenotypes and can be accessed online (https://muscle.coffeeprot.com/) to identify regulators of muscle function. We used this resource to prioritize targets for a functional genomic screen in human bioengineered skeletal muscle. This identified several negative regulators of muscle function including UFC1, an E2 ligase for protein UFMylation. We show UFMylation is up-regulated in a mouse model of amyotrophic lateral sclerosis, a disease that involves muscle atrophy. Furthermore, in vivo knockdown of UFMylation increased contraction force, implicating its role as a negative regulator of skeletal muscle function.
  • Item
    Thumbnail Image
    Neonatal antibiotics have long term sex-dependent effects on the enteric nervous system
    Poon, SSB ; Hung, LY ; Wu, Q ; Parathan, P ; Yalcinkaya, N ; Haag, A ; Luna, RA ; Bornstein, JC ; Savidge, TC ; Foong, JPP (WILEY, 2022-09-09)
    Infants and young children receive the highest exposures to antibiotics globally. Although there is building evidence that early life exposure to antibiotics increases susceptibility to various diseases including gut disorders later in life, the lasting impact of early life antibiotics on the physiology of the gut and its enteric nervous system (ENS) remains unclear. We treated neonatal mice with the antibiotic vancomycin during their first 10 postnatal days, then examined potential lasting effects of the antibiotic treatment on their colons during young adulthood (6 weeks old). We found that neonatal vancomycin treatment disrupted the gut functions of young adult female and male mice differently. Antibiotic-exposed females had significantly longer whole gut transit while antibiotic-treated males had significantly lower faecal weights compared to controls. Both male and female antibiotic-treated mice had greater percentages of faecal water content. Neonatal vancomycin treatment also had sexually dimorphic impacts on the neurochemistry and Ca2+ activity of young adult myenteric and submucosal neurons. Myenteric neurons of male mice were more disrupted than those of females, while opposing changes in submucosal neurons were seen in each sex. Neonatal vancomycin also induced sustained changes in colonic microbiota and lasting depletion of mucosal serotonin (5-HT) levels. Antibiotic impacts on microbiota and mucosal 5-HT were not sex-dependent, but we propose that the responses of the host to these changes are sex-specific. This first demonstration of long-term impacts of neonatal antibiotics on the ENS, gut microbiota and mucosal 5-HT has important implications for gut function and other physiological systems of the host. KEY POINTS: Early life exposure to antibiotics can increase susceptibility to diseases including functional gastrointestinal (GI) disorders later in life. Yet, the lasting impact of this common therapy on the gut and its enteric nervous system (ENS) remains unclear. We investigated the long-term impact of neonatal antibiotic treatment by treating mice with the antibiotic vancomycin during their neonatal period, then examining their colons during young adulthood. Adolescent female mice given neonatal vancomycin treatment had significantly longer whole gut transit times, while adolescent male and female mice treated with neonatal antibiotics had significantly wetter stools. Effects of neonatal vancomycin treatment on the neurochemistry and Ca2+ activity of myenteric and submucosal neurons were sexually dimorphic. Neonatal vancomycin also had lasting effects on the colonic microbiome and mucosal serotonin biosynthesis that were not sex-dependent. Different male and female responses to antibiotic-induced disruptions of the ENS, microbiota and mucosal serotonin biosynthesis can lead to sex-specific impacts on gut function.
  • Item
    Thumbnail Image
    Oxidative Stress-Induced HMGB1 Translocation in Myenteric Neurons Contributes to Neuropathy in Colitis
    Stavely, R ; Sahakian, L ; Filippone, RTT ; Stojanovska, V ; Bornstein, JCC ; Sakkal, S ; Nurgali, K (MDPI, 2022-12-01)
    High-mobility group box 1 (HMGB1) is a damage-associated molecular pattern released by dying cells to stimulate the immune response. During cell death, HMGB1 is translocated from the nucleus to the cytoplasm and passively released. High levels of secreted HMGB1 are observed in the faeces of inflammatory bowel disease (IBD) patients, indicating its role in IBD pathophysiology and potential as a non-invasive IBD biomarker. HMGB1 is important in regulating neuronal damage in the central nervous system; its pathological activity is intertwined with oxidative stress and inflammation. In this study, HMGB1 expression in the enteric nervous system and its relevance to intestinal neuroinflammation is explored in organotypic cultures of the myenteric plexus exposed to oxidative stimuli and in Winnie mice with spontaneous chronic colitis. Oxidative stimuli induced cytoplasmic translocation of HMGB1 in myenteric neurons in organotypic preparations. HMGB1 translocation correlated with enteric neuronal loss and oxidative stress in the myenteric ganglia of Winnie mice. Inhibition of HMGB1 by glycyrrhizic acid ameliorated HMGB1 translocation and myenteric neuronal loss in Winnie mice. These data highlight modulation of HMGB1 signalling as a therapeutic strategy to reduce the consequences of enteric neuroinflammation in colitis, warranting the exploration of therapeutics acting on the HMGB1 pathway as an adjunct treatment with current anti-inflammatory agents.
  • Item
    Thumbnail Image
    Exploring the pathogenesis of age-related macular degeneration: A review of the interplay between retinal pigment epithelium dysfunction and the innate immune system.
    Wong, JHC ; Ma, JYW ; Jobling, AI ; Brandli, A ; Greferath, U ; Fletcher, EL ; Vessey, KA (Frontiers Media SA, 2022)
    Age-related macular degeneration (AMD) is a leading cause of irreversible vision loss in the older population. Classical hallmarks of early and intermediate AMD are accumulation of drusen, a waste deposit formed under the retina, and pigmentary abnormalities in the retinal pigment epithelium (RPE). When the disease progresses into late AMD, vision is affected due to death of the RPE and the light-sensitive photoreceptors. The RPE is essential to the health of the retina as it forms the outer blood retinal barrier, which establishes ocular immune regulation, and provides support for the photoreceptors. Due to its unique anatomical position, the RPE can communicate with the retinal environment and the systemic immune environment. In AMD, RPE dysfunction and the accumulation of drusen drive the infiltration of retinal and systemic innate immune cells into the outer retina. While recruited endogenous or systemic mononuclear phagocytes (MPs) contribute to the removal of noxious debris, the accumulation of MPs can also result in chronic inflammation and contribute to AMD progression. In addition, direct communication and indirect molecular signaling between MPs and the RPE may promote RPE cell death, choroidal neovascularization and fibrotic scarring that occur in late AMD. In this review, we explore how the RPE and innate immune cells maintain retinal homeostasis, and detail how RPE dysfunction and aberrant immune cell recruitment contribute to AMD pathogenesis. Evidence from AMD patients will be discussed in conjunction with data from preclinical models, to shed light on future therapeutic targets for the treatment of AMD.
  • Item
    Thumbnail Image
    Gastrointestinal consequences of lipopolysaccharide-induced lung inflammation
    McQuade, RM ; Bandara, M ; Diwakarla, S ; Sahakian, L ; Han, MN ; Al Thaalibi, M ; Di Natale, MR ; Tan, M ; Harwood, KH ; Schneider-Futschik, EK ; Jarnicki, A (SPRINGER BASEL AG, 2022-11-02)
    BACKGROUND: Respiratory inflammation is the body's response to lung infection, trauma or hypersensitivity and is often accompanied by comorbidities, including gastrointestinal (GI) symptoms. Why respiratory inflammation is accompanied by GI dysfunction remains unclear. Here, we investigate the effect of lipopolysaccharide (LPS)-induced lung inflammation on intestinal barrier integrity, tight-junctions, enteric neurons and inflammatory marker expression. METHODS: Female C57bl/6 mice (6-8 weeks) were intratracheally administered LPS (5 µg) or sterile saline, and assessed after either 24 or 72 h. Total and differential cell counts in bronchoalveolar lavage fluid (BALF) were used to evaluate lung inflammation. Intestinal barrier integrity was assessed via cross sectional immunohistochemistry of tight junction markers claudin-1, claudin-4 and EpCAM. Changes in the enteric nervous system (ENS) and inflammation in the intestine were quantified immunohistochemically using neuronal markers Hu + and nNOS, glial markers GFAP and S100β and pan leukocyte marker CD45. RESULTS: Intratracheal LPS significantly increased the number of neutrophils in BALF at 24 and 72 h. These changes were associated with an increase in CD45 + cells in the ileal mucosa at 24 and 72 h, increased goblet cell expression at 24 h, and increased expression of EpCAM at 72 h. LPS had no effect on the expression of GFAP, S100β, nor the number of Hu + neurons or proportion of nNOS neurons in the myenteric plexus. CONCLUSIONS: Intratracheal LPS administration induces inflammation in the ileum that is associated with enhanced expression of EpCAM, decreased claudin-4 expression and increased goblet cell density, these changes may contribute to systemic inflammation that is known to accompany many inflammatory diseases of the lung.
  • Item
    Thumbnail Image
    Human pluripotent stem cells for the modelling of retinal pigment epithelium homeostasis and disease: A review
    Hall, JC ; Paull, D ; Pebay, A ; Lidgerwood, GE (WILEY, 2022-07-11)
    Human pluripotent stem cells (hPSCs), which include induced pluripotent stem cells and embryonic stem cells, are powerful tools for studying human development, physiology and disease, including those affecting the retina. Cells from selected individuals, or specific genetic backgrounds, can be differentiated into distinct cell types allowing the modelling of diseases in a dish for therapeutic development. hPSC-derived retinal cultures have already been used to successfully model retinal pigment epithelium (RPE) degeneration for various retinal diseases including monogenic conditions and complex disease such as age-related macular degeneration. Here, we will review the current knowledge gained in understanding the molecular events involved in retinal disease using hPSC-derived retinal models, in particular RPE models. We will provide examples of various conditions to illustrate the scope of applications associated with the use of hPSC-derived RPE models.