Anatomy and Neuroscience - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 914
  • Item
    Thumbnail Image
    Electrophysiological characterization of spontaneous recovery in deep dorsal horn interneurons after incomplete spinal cord injury
    Rank, MM ; Flynn, JR ; Galea, MP ; Callister, R ; Callister, RJ (ACADEMIC PRESS INC ELSEVIER SCIENCE, 2015-09-01)
    In the weeks and months following an incomplete spinal cord injury (SCI) significant spontaneous recovery of function occurs in the absence of any applied therapeutic intervention. The anatomical correlates of this spontaneous plasticity are well characterized, however, the functional changes that occur in spinal cord interneurons after injury are poorly understood. Here we use a T10 hemisection model of SCI in adult mice (9-10 wks old) combined with whole-cell patch clamp electrophysiology and a horizontal spinal cord slice preparation to examine changes in intrinsic membrane and synaptic properties of deep dorsal horn (DDH) interneurons. We made these measurements during short-term (4 wks) and long-term (10 wks) spontaneous recovery after SCI. Several important intrinsic membrane properties are altered in the short-term, but recover to values resembling those of uninjured controls in the longer term. AP discharge patterns are reorganized at both short-term and long-term recovery time points. This is matched by reorganization in the expression of voltage-activated potassium and calcium subthreshold-currents that shape AP discharge. Excitatory synaptic inputs onto DDH interneurons are significantly restructured in long-term SCI mice. Plots of sEPSC peak amplitude vs. rise times suggest considerable dendritic expansion or synaptic reorganization occurs especially during long-term recovery from SCI. Connectivity between descending dorsal column pathways and DDH interneurons is reduced in the short-term, but amplified in long-term recovery. Our results suggest considerable plasticity in both intrinsic and synaptic mechanisms occurs spontaneously in DDH interneurons following SCI and takes a minimum of 10 wks after the initial injury to stabilize.
  • Item
    Thumbnail Image
    Developing a spinal cord injury research strategy using a structured process of evidence review and stakeholder dialogue. Part III: outcomes
    Middleton, JW ; Piccenna, L ; Gruen, RL ; Williams, S ; Creasey, G ; Dunlop, S ; Brown, D ; Batchelor, PE ; Berlowitz, DJ ; Coates, S ; Dunn, JA ; Furness, JB ; Galea, MP ; Geraghty, T ; Kwon, BK ; Urquhart, S ; Yates, D ; Bragge, P (NATURE PUBLISHING GROUP, 2015-10-01)
    STUDY DESIGN: Focus Group. OBJECTIVES: To develop a unified, regional spinal cord injury (SCI) research strategy for Australia and New Zealand. SETTING: Australia. METHODS: A 1-day structured stakeholder dialogue was convened in 2013 in Melbourne, Australia, by the National Trauma Research Institute in collaboration with the SCI Network of Australia and New Zealand. Twenty-three experts participated, representing local and international research, clinical, consumer, advocacy, government policy and funding perspectives. Preparatory work synthesised evidence and articulated draft principles and options as a starting point for discussion. RESULTS: A regional SCI research strategy was proposed, whose objectives can be summarised under four themes. (1) Collaborative networks and strategic partnerships to increase efficiency, reduce duplication, build capacity and optimise research funding. (2) Research priority setting and coordination to manage competing studies. (3) Mechanisms for greater consumer engagement in research. (4) Resources and infrastructure to further develop SCI data registries, evaluate research translation and assess alignment of research strategy with stakeholder interests. These are consistent with contemporary international SCI research strategy development activities. CONCLUSION: This first step in a regional SCI research strategy has articulated objectives for further development by the wider SCI research community. The initiative has also reinforced the importance of coordinated, collective action in optimising outcomes following SCI.
  • Item
    Thumbnail Image
    Gait recovery following spinal cord injury in mice: Limited effect of treadmill training
    Battistuzzo, CR ; Rank, MM ; Flynn, JR ; Morgan, DL ; Callister, R ; Callister, RJ ; Galea, MP (TAYLOR & FRANCIS LTD, 2016-01-01)
    BACKGROUND: Several studies in rodents with complete spinal cord transections have demonstrated that treadmill training improves stepping movements. However, results from studies in incomplete spinal cord injured animals have been conflicting and questions regarding the training dosage after injury remain unresolved. OBJECTIVES: To assess the effects of treadmill-training regimen (20 minutes daily, 5 days a week) for 3, 6 or 9 weeks on the recovery of locomotion in hemisected SCI mice. METHODS: A randomized and blinded controlled experimental trial used a mouse model of incomplete spinal cord injury (SCI). After a left hemisection at T10, adult male mice were randomized to trained or untrained groups. The trained group commenced treadmill training one week after surgery and continued for 3, 6 or 9 weeks. Quantitative kinematic gait analysis was used to assess the spatiotemporal characteristics of the left hindlimb prior to injury and at 1, 4, 7 and 10 weeks post-injury. RESULTS: One week after injury there was no movement of the left hindlimb and some animals dragged their foot. Treadmill training led to significant improvements in step duration, but had limited effect on the hindlimb movement pattern. Locomotor improvements in trained animals were most evident at the hip and knee joints whereas recovery of ankle movement was limited, even after 9 weeks of treadmill training. CONCLUSION: These results demonstrate that treadmill training may lead to only modest improvement in recovery of hindlimb movement after incomplete spinal cord injury in mice.
  • Item
    Thumbnail Image
    Is more always better? How different 'doses' of exercise after incomplete spinal cord injury affects the membrane properties of deep dorsal horn interneurons
    Rank, MM ; Galea, MP ; Callister, R ; Callister, RJ (ACADEMIC PRESS INC ELSEVIER SCIENCE, 2018-02-01)
    Interneurons in the deep dorsal horn (DDH) of the spinal cord process somatosensory input, and form an important link between upper and lower motoneurons to subsequently shape motor output. Exercise training after SCI is known to improve functional motor recovery, but little is known about the mechanisms within spinal cord neurons that underlie these improvements. Here we investigate how the properties of DDH interneurons are affected by spinal cord injury (SCI) alone, and SCI in combination with different 'doses' of treadmill exercise training (3, 6, and 9wks). In an adult mouse hemisection model of SCI we used whole-cell patch-clamp electrophysiology to record intrinsic, AP firing and gain modulation properties from DDH interneurons in a horizontal spinal cord slice preparation. We find that neurons within two segments of the injury, both ipsi- and contralateral to the hemisection, are similarly affected by SCI and SCI plus exercise. The passive intrinsic membrane properties input resistance (Rin) and rheobase are sensitive to the effects of recovery time and exercise training after SCI thus altering DDH interneuron excitability. Conversely, select active membrane properties are largely unaffected by either SCI or exercise training. SCI itself causes a mismatch in the expression of voltage-gated subthreshold currents and AP discharge firing type. Over time after SCI, and especially with exercise training (9wks), this mismatched expression is exacerbated. Lastly, amplification properties (i.e. gain of frequency-current relationship) of DDH interneurons are altered by SCI alone and recover spontaneously with no clear effect of exercise training. These results suggest a larger 'dose' of exercise training (9wks) has a strong and selective effect on specific membrane properties, and on the output of interneurons in the vicinity of a SCI. These electrophysiological data provide new insights into the plasticity of DDH interneurons and the mechanisms by which exercise therapy after SCI can improve recovery.
  • Item
    Thumbnail Image
    Unidirectional monosynaptic connections from auditory areas to the primary visual cortex in the marmoset monkey
    Majka, P ; Rosa, MGP ; Bai, S ; Chan, JM ; Huo, B-X ; Jermakow, N ; Lin, MK ; Takahashi, YS ; Wolkowicz, IH ; Worthy, KH ; Rajan, R ; Reser, DH ; Wojcik, DK ; Okano, H ; Mitra, PP (SPRINGER HEIDELBERG, 2019-01-01)
    Until the late twentieth century, it was believed that different sensory modalities were processed by largely independent pathways in the primate cortex, with cross-modal integration only occurring in specialized polysensory areas. This model was challenged by the finding that the peripheral representation of the primary visual cortex (V1) receives monosynaptic connections from areas of the auditory cortex in the macaque. However, auditory projections to V1 have not been reported in other primates. We investigated the existence of direct interconnections between V1 and auditory areas in the marmoset, a New World monkey. Labelled neurons in auditory cortex were observed following 4 out of 10 retrograde tracer injections involving V1. These projections to V1 originated in the caudal subdivisions of auditory cortex (primary auditory cortex, caudal belt and parabelt areas), and targeted parts of V1 that represent parafoveal and peripheral vision. Injections near the representation of the vertical meridian of the visual field labelled few or no cells in auditory cortex. We also placed 8 retrograde tracer injections involving core, belt and parabelt auditory areas, none of which revealed direct projections from V1. These results confirm the existence of a direct, nonreciprocal projection from auditory areas to V1 in a different primate species, which has evolved separately from the macaque for over 30 million years. The essential similarity of these observations between marmoset and macaque indicate that early-stage audiovisual integration is a shared characteristic of primate sensory processing.
  • Item
    Thumbnail Image
    Claustrum projections to prefrontal cortex in the capuchin monkey (Cebus apella)
    Reser, DH ; Richardson, KE ; Montibeller, MO ; Zhao, S ; Chan, JMH ; Soares, JGM ; Chaplin, TA ; Gattass, R ; Rosa, MGP (FRONTIERS MEDIA SA, 2014-01-01)
    We examined the pattern of retrograde tracer distribution in the claustrum following intracortical injections into the frontal pole (area 10), and in dorsal (area 9), and ventral lateral (area 12) regions of the rostral prefrontal cortex in the tufted capuchin monkey (Cebus apella). The resulting pattern of labeled cells was assessed in relation to the three-dimensional geometry of the claustrum, as well as recent reports of claustrum-prefrontal connections in other primates. Claustrum-prefrontal projections were extensive, and largely concentrated in the ventral half of the claustrum, especially in the rostral 2/3 of the nucleus. Our data are consistent with a topographic arrangement of claustrum-cortical connections in which prefrontal and association cortices receive connections largely from the rostral and medial claustrum. Comparative aspects of claustrum-prefrontal topography across primate species and the implications of claustrum connectivity for understanding of cortical functional networks are explored, and we hypothesize that the claustrum may play a role in controlling or switching between resting state and task-associated cortical networks.
  • Item
    Thumbnail Image
    Venomics Reveals Venom Complexity of the Piscivorous Cone Snail, Conus tulipa
    Dutt, M ; Dutertre, S ; Jin, A-H ; Lavergne, V ; Alewood, PF ; Lewis, RJ (MDPI, 2019-01-01)
    The piscivorous cone snail Conus tulipa has evolved a net-hunting strategy, akin to the deadly Conus geographus, and is considered the second most dangerous cone snail to humans. Here, we present the first venomics study of C. tulipa venom using integrated transcriptomic and proteomic approaches. Parallel transcriptomic analysis of two C. tulipa specimens revealed striking differences in conopeptide expression levels (2.5-fold) between individuals, identifying 522 and 328 conotoxin precursors from 18 known gene superfamilies. Despite broad overlap at the superfamily level, only 86 precursors (11%) were common to both specimens. Conantokins (NMDA antagonists) from the superfamily B1 dominated the transcriptome and proteome of C. tulipa venom, along with superfamilies B2, A, O1, O3, con-ikot-ikot and conopressins, plus novel putative conotoxins precursors T1.3, T6.2, T6.3, T6.4 and T8.1. Thus, C. tulipa venom comprised both paralytic (putative ion channel modulating α-, ω-, μ-, δ-) and non-paralytic (conantokins, con-ikot-ikots, conopressins) conotoxins. This venomic study confirms the potential for non-paralytic conotoxins to contribute to the net-hunting strategy of C. tulipa.
  • Item
    Thumbnail Image
    The alpha(1)-adrenoceptor inhibitor rho-TIA facilitates net hunting in piscivorous Conus tulipa
    Dutt, M ; Giacomotto, J ; Ragnarsson, L ; Andersson, A ; Brust, A ; Dekan, Z ; Alewood, PF ; Lewis, RJ (NATURE PUBLISHING GROUP, 2019-11-28)
    Cone snails use separately evolved venoms for prey capture and defence. While most use a harpoon for prey capture, the Gastridium clade that includes the well-studied Conus geographus and Conus tulipa, have developed a net hunting strategy to catch fish. This unique feeding behaviour requires secretion of "nirvana cabal" peptides to dampen the escape response of targeted fish allowing for their capture directly by mouth. However, the active components of the nirvana cabal remain poorly defined. In this study, we evaluated the behavioural effects of likely nirvana cabal peptides on the teleost model, Danio rerio (zebrafish). Surprisingly, the conantokins (NMDA receptor antagonists) and/or conopressins (vasopressin receptor agonists and antagonists) found in C. geographus and C. tulipa venom failed to produce a nirvana cabal-like effect in zebrafish. In contrast, low concentrations of the non-competitive adrenoceptor antagonist ρ-TIA found in C. tulipa venom (EC50 = 190 nM) dramatically reduced the escape response of zebrafish larvae when added directly to aquarium water. ρ-TIA inhibited the zebrafish α1-adrenoceptor, confirming ρ-TIA has the potential to reverse the known stimulating effects of norepinephrine on fish behaviour. ρ-TIA may act alone and not as part of a cabal, since it did not synergise with conopressins and/or conantokins. This study highlights the importance of using ecologically relevant animal behaviour models to decipher the complex neurobiology underlying the prey capture and defensive strategies of cone snails.
  • Item
    Thumbnail Image
    Transcriptomic-Proteomic Correlation in the Predation-Evoked Venom of the Cone Snail, Conus imperialis.
    Jin, A-H ; Dutertre, S ; Dutt, M ; Lavergne, V ; Jones, A ; Lewis, RJ ; Alewood, PF (MDPI AG, 2019-03-19)
    Individual variation in animal venom has been linked to geographical location, feeding habit, season, size, and gender. Uniquely, cone snails possess the remarkable ability to change venom composition in response to predatory or defensive stimuli. To date, correlations between the venom gland transcriptome and proteome within and between individual cone snails have not been reported. In this study, we use 454 pyrosequencing and mass spectrometry to decipher the transcriptomes and proteomes of the venom gland and corresponding predation-evoked venom of two specimens of Conus imperialis. Transcriptomic analyses revealed 17 conotoxin gene superfamilies common to both animals, including 5 novel superfamilies and two novel cysteine frameworks. While highly expressed transcripts were common to both specimens, variation of moderately and weakly expressed precursor sequences was surprisingly diverse, with one specimen expressing two unique gene superfamilies and consistently producing more paralogs within each conotoxin gene superfamily. Using a quantitative labelling method, conotoxin variability was compared quantitatively, with highly expressed peptides showing a strong correlation between transcription and translation, whereas peptides expressed at lower levels showed a poor correlation. These results suggest that major transcripts are subject to stabilizing selection, while minor transcripts are subject to diversifying selection.
  • Item
    Thumbnail Image
    Acute Down-regulation of BDNF Signaling Does Not Replicate Exacerbated Amyloid-beta Levels and Cognitive Impairment Induced by Cholinergic Basal Forebrain Lesion
    Turnbull, MT ; Boskovic, Z ; Coulson, EJ (FRONTIERS MEDIA SA, 2018-02-22)
    Degeneration of basal forebrain cholinergic neurons (BFCNs) precedes hippocampal degeneration and pathological amyloid-beta (Aβ) accumulation, and underpins the development of cognitive dysfunction in sporadic Alzheimer's disease (AD). We hypothesized that degeneration of BFCNs causes a decrease in neurotrophin levels in innervated brain areas, which in turn promotes the development of Aβ pathology and cognitive impairment. Here we show that lesion of septo-hippocampal BFCNs in a pre-symptomatic transgenic amyloid AD mouse model (APP/PS1 mice) increases soluble Aβ levels in the hippocampus, and induces cognitive deficits in a spatial memory task that are not seen in either unlesioned APP/PS1 or non-transgenic littermate control mice. Furthermore, the BFCN lesion results in decreased levels of brain-derived neurotrophic factor (BDNF). However, viral knockdown of neuronal BDNF in the hippocampus of APP/PS1 mice (in the absence of BFCN loss) neither increased the level of Aβ nor caused cognitive deficits. These results suggest that the cognitive decline and Aβ pathology induced by BFCN loss occur independent of dysfunctional neuronal BDNF signaling, and may therefore be directly underpinned by reduced cholinergic neurotransmission.