Anatomy and Neuroscience - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 5 of 5
  • Item
    Thumbnail Image
    Group I Metabotropic Glutamate Receptors Modulate Motility and Enteric Neural Activity in the Mouse Colon
    Leembruggen, AJL ; Lu, Y ; Wang, H ; Uzungil, V ; Renoir, T ; Hannan, AJJ ; Stamp, LAA ; Hao, MMM ; Bornstein, JCC (MDPI, 2023-01)
    Glutamate is the major excitatory neurotransmitter in the central nervous system, and there is evidence that Group-I metabotropic glutamate receptors (mGlu1 and mGlu5) have established roles in excitatory neurotransmission and synaptic plasticity. While glutamate is abundantly present in the gut, it plays a smaller role in neurotransmission in the enteric nervous system. In this study, we examined the roles of Group-I mGlu receptors in gastrointestinal function. We investigated the expression of Grm1 (mGlu1) and Grm5 (mGlu5) in the mouse myenteric plexus using RNAscope in situ hybridization. Live calcium imaging and motility analysis were performed on ex vivo preparations of the mouse colon. mGlu5 was found to play a role in excitatory enteric neurotransmission, as electrically-evoked calcium transients were sensitive to the mGlu5 antagonist MPEP. However, inhibition of mGlu5 activity did not affect colonic motor complexes (CMCs). Instead, inhibition of mGlu1 using BAY 36-7620 reduced CMC frequency but did not affect enteric neurotransmission. These data highlight complex roles for Group-I mGlu receptors in myenteric neuron activity and colonic function.
  • Item
    Thumbnail Image
    A Novel Method for Identifying the Transition Zone in Long-Segment Hirschsprung Disease: Investigating the Muscle Unit to Ganglion Ratio
    Yang, W ; Pham, J ; King, SK ; Newgreen, DF ; Young, HM ; Stamp, LA ; Hao, MM (MDPI, 2022-08)
    Hirschsprung disease (HSCR) is characterised by the absence of enteric ganglia along variable lengths of the distal bowel. Current gold standard treatment involves the surgical resection of the defective, aganglionic bowel. Clear and reliable distinction of the normoganglionated bowel from the transition zone is key for successful resection of the entire defective bowel, and the avoidance of subsequent postoperative complications. However, the intraoperative nature of the tissue analysis and the variability of patient samples, sample preparation, and operator objectivity, make reproducible identification of the transition zone difficult. Here, we have described a novel method for using muscle units as a distinctive landmark for quantifying the density of enteric ganglia in resection specimens from HSCR patients. We show that the muscle unit to ganglion ratio is greater in the transition zone when compared with the proximal, normoganglionated region for long-segment HSCR patients. Patients with short-segment HSCR were also investigated, however, the muscle unit to ganglion ratio was not significantly different in these patients. Immunohistochemical examination of individual ganglia showed that there were no differences in the proportions of either enteric neurons or glial cells through the different regions of the resected colon. In addition, we identified that the size of enteric ganglia was smaller for patients that went on to develop HSCR associated enterocolitis; although the density of ganglia, as determined by the muscle unit to ganglia ratio, was not different when compared with patients that had no further complications. This suggests that subtle changes in the enteric nervous system, even in the "normoganglionated" colon, could be involved in changes in immune function and subsequent bacterial dysbiosis.
  • Item
    Thumbnail Image
    Development, Diversity, and Neurogenic Capacity of Enteric Glia
    Boesmans, W ; Nash, A ; Tasnady, KR ; Yang, W ; Stamp, LA ; Hao, MM (FRONTIERS MEDIA SA, 2022-01-17)
    Enteric glia are a fascinating population of cells. Initially identified in the gut wall as the "support" cells of the enteric nervous system, studies over the past 20 years have unveiled a vast array of functions carried out by enteric glia. They mediate enteric nervous system signalling and play a vital role in the local regulation of gut functions. Enteric glial cells interact with other gastrointestinal cell types such as those of the epithelium and immune system to preserve homeostasis, and are perceptive to luminal content. Their functional versatility and phenotypic heterogeneity are mirrored by an extensive level of plasticity, illustrated by their reactivity in conditions associated with enteric nervous system dysfunction and disease. As one of the hallmarks of their plasticity and extending their operative relationship with enteric neurons, enteric glia also display neurogenic potential. In this review, we focus on the development of enteric glial cells, and the mechanisms behind their heterogeneity in the adult gut. In addition, we discuss what is currently known about the role of enteric glia as neural precursors in the enteric nervous system.
  • Item
    Thumbnail Image
    Surgical method to prevent early death of neonatal rat pups with Hirschsprung disease, thus permitting development of long-term therapeutic approaches
    Stamp, LA ; Lei, E ; Liew, JJM ; Pustovit, R ; Hao, MM ; Croaker, DH ; Furness, JB ; Adams, CD (OXFORD UNIV PRESS, 2022-01-10)
    Hirschsprung disease occurs when children are born with no intrinsic nerve cells in varying lengths of the large intestine. In the most severe cases, neurons are also missing from the distal part of the small intestine. Nerve-mediated relaxation of the aganglionic bowel fails and fecal matter accumulates in the more proximal regions of the intestine. This is life threatening. Perforation of the bowel can ensue, causing sepsis and in some cases, death of the infant. Repopulation of the colon with neural stem cells is a potential therapy, but for this to be successful the patient or experimental animal needs to survive long enough for neural precursors to differentiate and make appropriate connections. We have developed a surgical procedure that can be applied to rats with Hirschsprung disease. A stoma was created to allow the normal bowel to empty and a second stoma leading to the aganglionic bowel was also created. This allowed homozygous mutants that would usually die at less than 3 weeks of age to survive into adulthood. During this time, the rats also required post-operative care of their stomas. The interventions we describe provide an animal model of Hirschsprung disease that is suited to assess the effectiveness of cell therapies in the treatment of this condition.
  • Item
    Thumbnail Image
    Kif1bp loss in mice leads to defects in the peripheral and central nervous system and perinatal death
    Hirst, CS ; Stamp, LA ; Bergner, AJ ; Hao, MM ; Tran, MX ; Morgan, JM ; Dutschmann, M ; Allen, AM ; Paxinos, G ; Furlong, TM ; McKeown, SJ ; Young, HM (NATURE PORTFOLIO, 2017-11-30)
    Goldberg-Shprintzen syndrome is a poorly understood condition characterized by learning difficulties, facial dysmorphism, microcephaly, and Hirschsprung disease. GOSHS is due to recessive mutations in KIAA1279, which encodes kinesin family member 1 binding protein (KIF1BP, also known as KBP). We examined the effects of inactivation of Kif1bp in mice. Mice lacking Kif1bp died shortly after birth, and exhibited smaller brains, olfactory bulbs and anterior commissures, and defects in the vagal and sympathetic innervation of the gut. Kif1bp was found to interact with Ret to regulate the development of the vagal innervation of the stomach. Although newborn Kif1bp -/- mice had neurons along the entire bowel, the colonization of the gut by neural crest-derived cells was delayed. The data show an essential in vivo role for KIF1BP in axon extension from some neurons, and the reduced size of the olfactory bulb also suggests additional roles for KIF1BP. Our mouse model provides a valuable resource to understand GOSHS.