Anatomy and Neuroscience - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 6 of 6
  • Item
    Thumbnail Image
    Antigen-loaded MR1 tetramers define T cell receptor heterogeneity in mucosal-associated invariant T cells
    Reantragoon, R ; Corbett, AJ ; Sakala, IG ; Gherardin, NA ; Furness, JB ; Chen, Z ; Eckle, SBG ; Uldrich, AP ; Birkinshaw, RW ; Patel, O ; Kostenko, L ; Meehan, B ; Kedzierska, K ; Liu, L ; Fairlie, DP ; Hansen, TH ; Godfrey, DI ; Rossjohn, J ; McCluskey, J ; Kjer-Nielsen, L (ROCKEFELLER UNIV PRESS, 2013-10-21)
    Mucosal-associated invariant T cells (MAIT cells) express a semi-invariant T cell receptor (TCR) α-chain, TRAV1-2-TRAJ33, and are activated by vitamin B metabolites bound by the major histocompatibility complex (MHC)-related class I-like molecule, MR1. Understanding MAIT cell biology has been restrained by the lack of reagents to specifically identify and characterize these cells. Furthermore, the use of surrogate markers may misrepresent the MAIT cell population. We show that modified human MR1 tetramers loaded with the potent MAIT cell ligand, reduced 6-hydroxymethyl-8-D-ribityllumazine (rRL-6-CH₂OH), specifically detect all human MAIT cells. Tetramer(+) MAIT subsets were predominantly CD8(+) or CD4(-)CD8(-), although a small subset of CD4(+) MAIT cells was also detected. Notably, most human CD8(+) MAIT cells were CD8α(+)CD8β(-/lo), implying predominant expression of CD8αα homodimers. Tetramer-sorted MAIT cells displayed a T(H)1 cytokine phenotype upon antigen-specific activation. Similarly, mouse MR1-rRL-6-CH₂OH tetramers detected CD4(+), CD4(-)CD8(-) and CD8(+) MAIT cells in Vα19 transgenic mice. Both human and mouse MAIT cells expressed a broad TCR-β repertoire, and although the majority of human MAIT cells expressed TRAV1-2-TRAJ33, some expressed TRAJ12 or TRAJ20 genes in conjunction with TRAV1-2. Accordingly, MR1 tetramers allow precise phenotypic characterization of human and mouse MAIT cells and revealed unanticipated TCR heterogeneity in this population.
  • Item
    Thumbnail Image
    New Roles of Serotonin and Tachykinins in Intestinal Mucositis?
    Callaghan, B ; Furness, JB (SPRINGER, 2013-12)
  • Item
    No Preview Available
    Transplanted progenitors generate functional enteric neurons in the postnatal colon
    Hotta, R ; Stamp, LA ; Foong, JPP ; McConnell, SN ; Bergner, AJ ; Anderson, RB ; Enomoto, H ; Newgreen, DF ; Obermayr, F ; Furness, JB ; Young, HM (AMER SOC CLINICAL INVESTIGATION INC, 2013-03)
    Cell therapy has the potential to treat gastrointestinal motility disorders caused by diseases of the enteric nervous system. Many studies have demonstrated that various stem/progenitor cells can give rise to functional neurons in the embryonic gut; however, it is not yet known whether transplanted neural progenitor cells can migrate, proliferate, and generate functional neurons in the postnatal bowel in vivo. We transplanted neurospheres generated from fetal and postnatal intestinal neural crest-derived cells into the colon of postnatal mice. The neurosphere-derived cells migrated, proliferated, and generated neurons and glial cells that formed ganglion-like clusters within the recipient colon. Graft-derived neurons exhibited morphological, neurochemical, and electrophysiological characteristics similar to those of enteric neurons; they received synaptic inputs; and their neurites projected to muscle layers and the enteric ganglia of the recipient mice. These findings show that transplanted enteric neural progenitor cells can generate functional enteric neurons in the postnatal bowel and advances the notion that cell therapy is a promising strategy for enteric neuropathies.
  • Item
    Thumbnail Image
    The gut as a sensory organ
    Furness, JB ; Rivera, LR ; Cho, H-J ; Bravo, DM ; Callaghan, B (NATURE PUBLISHING GROUP, 2013-12)
    The gastrointestinal tract presents the largest and most vulnerable surface to the outside world. Simultaneously, it must be accessible and permeable to nutrients and must defend against pathogens and potentially injurious chemicals. Integrated responses to these challenges require the gut to sense its environment, which it does through a range of detection systems for specific chemical entities, pathogenic organisms and their products (including toxins), as well as physicochemical properties of its contents. Sensory information is then communicated to four major effector systems: the enteroendocrine hormonal signalling system; the innervation of the gut, both intrinsic and extrinsic; the gut immune system; and the local tissue defence system. Extensive endocrine-neuro-immune-organ-defence interactions are demonstrable, but under-investigated. A major challenge is to develop a comprehensive understanding of the integrated responses of the gut to the sensory information it receives. A major therapeutic opportunity exists to develop agents that target the receptors facing the gut lumen.
  • Item
    Thumbnail Image
    Expression of the ghrelin receptor gene in neurons of the medulla oblongata of the rat
    Bron, R ; Yin, L ; Russo, D ; Furness, JB (WILEY, 2013-08-15)
    There is ambiguity concerning the distribution of neurons that express the ghrelin receptor (GHSR) in the medulla oblongata. In the current study we used a sensitive nonradioactive method to investigate GHSR mRNA distribution by in situ hybridization. Strong expression of the GHSR gene was confirmed in neurons of the facial nucleus (FacN, 7), the dorsal vagal complex (DVC), and the semicompact (but not compact) nucleus ambiguus (AmbSC and AmbC). In addition, expression of GHSR was found in other regions, where it had not been described before. GHSR-positive neurons were observed in the gustatory rostral nucleus tractus solitarius and in areas involved in vestibulo-ocular processing (such as the medial vestibular nucleus and the nucleus abducens). GHSR expression was also noted in ventral areas associated with cardiorespiratory control, including the gigantocellular reticular nucleus, the lateral paragigantocellular nucleus, the rostral and caudal ventrolateral medulla, the (pre)-Bötzinger complex, and the rostral and caudal ventrolateral respiratory group. However, GHSR-positive neurons in ventrolateral areas did not express markers for cardiovascular presympathetic vasomotor neurons, respiratory propriobulbar rhythmogenic neurons, or sensory interneurons. GHSR-positive cells were intermingled with catecholamine neurons in the dorsal vagal complex but these populations did not overlap. Thus, the ghrelin receptor occurs in the medulla oblongata in 1) second-order sensory neurons processing gustatory, vestibulo-ocular, and visceral sensation; 2) cholinergic somatomotor neurons of the FacN and autonomic preganglionic neurons of the DMNX and AmbSC; 3) cardiovascular neurons in the DVC, Gi, and LPGi; 4) neurons of as yet unknown function in the ventrolateral medulla.
  • Item
    Thumbnail Image
    Antigen-loaded MR1 tetramers define T cell receptor heterogeneity in mucosal-associated invariant T cells
    Reantragoon, Rangsima ; Corbett, Alexandra J. ; Sakala, Isaac G. ; Gherardin, Nicholas A. ; Furness, John B. ; CHEN, ZHENJUN ; Eckle, Sidonia B.G. ; Uldrich, Adam P. ; Birkinshaw, Richard W. ; Patel, Onisha ; KOSTENKO, LYUDMILA ; MEEHAN, BRONWYN ; KEDZIERSKA, KATHERINE ; Liu, Ligong ; Fairlie, David P. ; Hansen, Ted H. ; GODFREY, DALE I. ; ROSSJOHN, JAMIE ; MCCLUSKEY, JAMES ; KJER-NIELSEN, LARS (Rockefeller University Press, 2013)
    Mucosal-associated invariant T cells (MAIT cells) express a semi-invariant T cell receptor (TCR) alpha-chain, TRAV1-2-TRAJ33, and are activated by vitamin B metabolites bound by the major histocompatibility complex (MHC)-related class I-like molecule, MR1. Understanding MAIT cell biology has been restrained by the lack of reagents to specifically identify and characterize these cells. Furthermore, the use of surrogate markers may misrepresent the MAIT cell population. We show that modified human MR1 tetramers loaded with the potent MAIT cell ligand, reduced 6-hydroxymethyl-8-D-ribityllumazine (rRL-6-CH2OH), specifically detect all human MAIT cells. Tetramer(+) MAIT subsets were predominantly CD8(+) or CD4(-)CD8(-), although a small subset of CD4(+) MAIT cells was also detected. Notably, most human CD8(+) MAIT cells were CD8 alpha(+)CD8 beta(-/lo), implying predominant expression of CD8 alpha alpha homodimers. Tetramer-sorted MAIT cells displayed a T(H)1 cytokine phenotype upon antigen-specific activation. Similarly, mouse MR1-rRL-6-CH2OH tetramers detected CD4(+), CD4(-)CD8(-) and CD8(+) MAIT cells in V. 19 transgenic mice. Both human and mouse MAIT cells expressed a broad TCR-beta repertoire, and although the majority of human MAIT cells expressed TRAV1-2-TRAJ33, some expressed TRAJ12 or TRAJ20 genes in conjunction with TRAV1-2. Accordingly, MR1 tetramers allow precise phenotypic characterization of human and mouse MAIT cells and revealed unanticipated TCR heterogeneity in this population.