Anatomy and Neuroscience - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 6 of 6
  • Item
    Thumbnail Image
    Acute Delivery of EphA4-Fc Improves Functional Recovery after Contusive Spinal Cord Injury in Rats
    Spanevello, MD ; Tajouri, SI ; Mirciov, C ; Kurniawan, N ; Pearse, MJ ; Fabri, LJ ; Owczarek, CM ; Hardy, MP ; Bradford, RA ; Ramunno, ML ; Turnley, AM ; Ruitenberg, MJ ; Boyd, AW ; Bartlett, PF (MARY ANN LIEBERT, INC, 2013-06)
    Blocking the action of inhibitory molecules at sites of central nervous system injury has been proposed as a strategy to promote axonal regeneration and functional recovery. We have previously shown that genetic deletion or competitive antagonism of EphA4 receptor activity promotes axonal regeneration and functional recovery in a mouse model of lateral hemisection spinal cord injury. Here we have assessed the effect of blocking EphA4 activation using the competitive antagonist EphA4-Fc in a rat model of thoracic contusive spinal cord injury. Using a ledged tapered balance beam and open-field testing, we observed significant improvements in recovery of locomotor function after EphA4-Fc treatment. Consistent with functional improvement, using high-resolution ex vivo magnetic resonance imaging at 16.4T, we found that rats treated with EphA4-Fc had a significantly increased cross-sectional area of the dorsal funiculus caudal to the injury epicenter compared with controls. Our findings indicate that EphA4-Fc promotes functional recovery following contusive spinal cord injury and provides further support for the therapeutic benefit of treatment with the competitive antagonist in acute cases of spinal cord injury.
  • Item
    Thumbnail Image
    Nanodiamonds with silicon vacancy defects for nontoxic photostable fluorescent labeling of neural precursor cells
    Merson, TD ; Castelletto, S ; Aharonovich, I ; Turbic, A ; Kilpatrick, TJ ; Turnley, AM (OPTICAL SOC AMER, 2013-10-15)
    Nanodiamonds (NDs) containing silicon vacancy (SiV) defects were evaluated as a potential biomarker for the labeling and fluorescent imaging of neural precursor cells (NPCs). SiV-containing NDs were synthesized using chemical vapor deposition and silicon ion implantation. Spectrally, SiV-containing NDs exhibited extremely stable fluorescence and narrow bandwidth emission with an excellent signal to noise ratio exceeding that of NDs containing nitrogen-vacancy centers. NPCs labeled with NDs exhibited normal cell viability and proliferative properties consistent with biocompatibility. We conclude that SiV-containing NDs are a promising biomedical research tool for cellular labeling and optical imaging in stem cell research.
  • Item
    Thumbnail Image
    Regulation of endogenous neural stem/progenitor cells for neural repair-factors that promote neurogenesis and gliogenesis in the normal and damaged brain
    Christie, KJ ; Turnley, AM (FRONTIERS MEDIA SA, 2013-01-18)
    Neural stem/precursor cells in the adult brain reside in the subventricular zone (SVZ) of the lateral ventricles and the subgranular zone (SGZ) of the dentate gyrus in the hippocampus. These cells primarily generate neuroblasts that normally migrate to the olfactory bulb (OB) and the dentate granule cell layer respectively. Following brain damage, such as traumatic brain injury, ischemic stroke or in degenerative disease models, neural precursor cells from the SVZ in particular, can migrate from their normal route along the rostral migratory stream (RMS) to the site of neural damage. This neural precursor cell response to neural damage is mediated by release of endogenous factors, including cytokines and chemokines produced by the inflammatory response at the injury site, and by the production of growth and neurotrophic factors. Endogenous hippocampal neurogenesis is frequently also directly or indirectly affected by neural damage. Administration of a variety of factors that regulate different aspects of neural stem/precursor biology often leads to improved functional motor and/or behavioral outcomes. Such factors can target neural stem/precursor proliferation, survival, migration and differentiation into appropriate neuronal or glial lineages. Newborn cells also need to subsequently survive and functionally integrate into extant neural circuitry, which may be the major bottleneck to the current therapeutic potential of neural stem/precursor cells. This review will cover the effects of a range of intrinsic and extrinsic factors that regulate neural stem/precursor cell functions. In particular it focuses on factors that may be harnessed to enhance the endogenous neural stem/precursor cell response to neural damage, highlighting those that have already shown evidence of preclinical effectiveness and discussing others that warrant further preclinical investigation.
  • Item
    Thumbnail Image
    EphA4 Receptor Tyrosine Kinase Is a Modulator of Onset and Disease Severity of Experimental Autoimmune Encephalomyelitis (EAE)
    Munro, KM ; Dixon, KJ ; Gresle, MM ; Jonas, A ; Kemper, D ; Doherty, W ; Fabri, LJ ; Owczarek, CM ; Pearse, M ; Boyd, AW ; Kilpatrick, TJ ; Butzkueven, H ; Turnley, AM ; Fujinami, RS (PUBLIC LIBRARY SCIENCE, 2013-02-04)
    The EphA4 receptor tyrosine kinase is a major regulator of axonal growth and astrocyte reactivity and is a possible inflammatory mediator. Given that multiple sclerosis (MS) is primarily an inflammatory demyelinating disease and in mouse models of MS, such as experimental autoimmune encephalomyelitis (EAE), axonal degeneration and reactive gliosis are prominent clinical features, we hypothesised that endogenous EphA4 could play a role in modulating EAE. EAE was induced in EphA4 knockout and wildtype mice using MOG peptide immunisation and clinical severity and histological features of the disease were then compared in lumbar spinal cord sections. EphA4 knockout mice exhibited a markedly less severe clinical course than wildtype mice, with a lower maximum disease grade and a slightly later onset of clinical symptoms. Numbers of infiltrating T cells and macrophages, the number and size of the lesions, and the extent of astrocytic gliosis were similar in both genotypes; however, EphA4 knockout mice appeared to have decreased axonal pathology. Blocking of EphA4 in wildtype mice by administration of soluble EphA4 (EphA4-Fc) as a decoy receptor following induction of EAE produced a delay in onset of clinical symptoms; however, most mice had clinical symptoms of similar severity by 22 days, indicating that EphA4 blocking treatment slowed early EAE disease evolution. Again there were no apparent differences in histopathology. To determine whether the role of EphA4 in modulating EAE was CNS mediated or due to an altered immune response, MOG primed T cells from wildtype and EphA4 knockout mice were passively transferred into naive recipient mice and both were shown to induce disease of equivalent severity. These results are consistent with a non-inflammatory, CNS specific, deleterious effect of EphA4 during neuroinflammation that results in axonal pathology.
  • Item
    Thumbnail Image
    ADULT HIPPOCAMPAL NEUROGENESIS, RHO KINASE INHIBITION AND ENHANCEMENT OF NEURONAL SURVIVAL
    Christie, KJ ; Turbic, A ; Turnley, AM (PERGAMON-ELSEVIER SCIENCE LTD, 2013-09-05)
    Adult neurogenesis occurs throughout life; however the majority of new neurons do not survive. Enhancing the survival of these new neurons will increase the likelihood that these neurons could return function following injury. Inhibition of Rho kinase is known to increase neurite outgrowth and regeneration. Previous work in our lab has demonstrated a role for Rho kinase inhibition and survival of new born neurons from the sub-ventricular zone. In this study we examined the role of Rho kinase inhibition on hippocampal neurogenesis. Two concentrations of Rho kinase inhibitor Y27632 (20 and 100 μM) and the proliferative marker EdU were infused in the lateral ventricle for 7 days. Quantification of doublecortin+/EdU+ cells on the 7th day showed that cell numbers were not significantly different, suggesting no effect on neuroblast generation. Following infusion of 100μM Y27632, the number of newborn NeuN+/EdU+ neurons at 35 days in the granular cell layer of the dentate gyrus of the ipsilateral side of the infusion did not display a significant difference; however there was an increase on the contralateral side, suggesting a dose effect. Infusion of a lower dose (20 μM) of Y27632 resulted in an increase in NeuN+/EdU+ cells in the granular cell layer of the ipsilateral side at 35 days. These mice also demonstrated enhanced spatial memory as tested by the Y maze with no significant changes in anxiety or novel object recognition. Rho kinase inhibition enhanced the survival of new born neurons in the dentate gyrus with a specific dosage effect. These results suggest that inhibition of Rho kinase following injury could be beneficial for increasing the survival of new neurons that may aid recovery.
  • Item