Anatomy and Neuroscience - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 32
  • Item
    Thumbnail Image
    Dissociating neural variability related to stimulus quality and response times in perceptual decision-making
    Bode, S ; Bennett, D ; Sewell, DK ; Paton, B ; Egan, GF ; Smith, PL ; Murawski, C (Elsevier, 2018-03-01)
    According to sequential sampling models, perceptual decision-making is based on accumulation of noisy evidence towards a decision threshold. The speed with which a decision is reached is determined by both the quality of incoming sensory information and random trial-by-trial variability in the encoded stimulus representations. To investigate those decision dynamics at the neural level, participants made perceptual decisions while functional magnetic resonance imaging (fMRI) was conducted. On each trial, participants judged whether an image presented under conditions of high, medium, or low visual noise showed a piano or a chair. Higher stimulus quality (lower visual noise) was associated with increased activation in bilateral medial occipito-temporal cortex and ventral striatum. Lower stimulus quality was related to stronger activation in posterior parietal cortex (PPC) and dorsolateral prefrontal cortex (DLPFC). When stimulus quality was fixed, faster response times were associated with a positive parametric modulation of activation in medial prefrontal and orbitofrontal cortex, while slower response times were again related to more activation in PPC, DLPFC and insula. Our results suggest that distinct neural networks were sensitive to the quality of stimulus information, and to trial-to-trial variability in the encoded stimulus representations, but that reaching a decision was a consequence of their joint activity.
  • Item
    Thumbnail Image
    Does transcranial electrical stimulation enhance corticospinal excitability of the motor cortex in healthy individuals? A systematic review and meta-analysis
    Dissanayaka, T ; Zoghi, M ; Farrell, M ; Egan, GF ; Jaberzadeh, S (WILEY, 2017-08)
    Numerous studies have explored the effects of transcranial electrical stimulation (tES) - including anodal transcranial direct current stimulation (a-tDCS), cathodal transcranial direct current stimulation (c-tDCS), transcranial alternative current stimulation (tACS), transcranial random noise stimulation (tRNS) and transcranial pulsed current stimulation (tPCS) - on corticospinal excitability (CSE) in healthy populations. However, the efficacy of these techniques and their optimal parameters for producing robust results has not been studied. Thus, the aim of this systematic review was to consolidate current knowledge about the effects of various parameters of a-tDCS, c-tDCS, tACS, tRNS and tPCS on the CSE of the primary motor cortex (M1) in healthy people. Leading electronic databases were searched for relevant studies published between January 1990 and February 2017; 126 articles were identified, and their results were extracted and analysed using RevMan software. The meta-analysis showed that a-tDCS application on the dominant side significantly increases CSE (P < 0.01) and that the efficacy of a-tDCS is dependent on current density and duration of application. Similar results were obtained for stimulation of M1 on the non-dominant side (P = 0.003). The effects of a-tDCS reduce significantly after 24 h (P = 0.006). Meta-analysis also revealed significant reduction in CSE following c-tDCS (P < 0.001) and significant increases after tRNS (P = 0.03) and tPCS (P = 0.01). However, tACS effects on CSE were only significant when the stimulation frequency was ≥140 Hz. This review provides evidence that tES has substantial effects on CSE in healthy individuals for a range of stimulus parameters.
  • Item
    Thumbnail Image
    Cerebral Compensation During Motor Function in Friedreich Ataxia: The IMAGE-FRDA Study
    Harding, IH ; Corben, LA ; Delatycki, MB ; Stagnitti, MR ; Storey, E ; Egan, GF ; Georgiou-Karistianis, N (WILEY, 2017-08)
  • Item
    Thumbnail Image
    Comparison of Rossini-Rothwell and adaptive threshold-hunting methods on the stability of TMS induced motor evoked potentials amplitudes
    Dissanayaka, T ; Zoghi, M ; Farrell, M ; Egan, G ; Jaberzadeh, S (WILEY, 2018-11)
    Several methods can be used to determine the resting motor threshold (RMT) and by that recording transcranial magnetic stimulation (TMS) induced motor evoked potentials (MEPs). However, no research has compared the test retest reliability of these methods. Thus, the aim of this study was to determine intra- and inter-session reliability of Rossini-Rothwell (R-R) and parameter estimation by sequential testing (PEST) methods on TMS-induced MEPs and comparison of these two methods on RMT. Twelve healthy individuals participated in this study three times (T1, T2 and T3) over two days. TMS was applied using both R-R and PEST to estimate RMT and average of 25 MEPs were acquired at each of the three time points. The intra-class correlation coefficient indicated high intra-session reliability in the MEP amplitudes for both methods (0.79 and 0.88, R-R and PEST respectively). The RMT and MEP amplitudes had higher inter-session reliability in both methods (0.99 and 0.998, R-R and PEST respectively; 0.84 and 0.76, R-R and PEST respectively). There was no significant difference between methods for RMT at both T1 (maximum stimulator output of R-R vs. PEST, 33.7% ± 7.7% vs. 33.8% ± 7.6%, p = 0.75) and T3 (maximum stimulator output of R-R vs. PEST, 33.5% ± 7.3% vs. 33.7% ± 7.3%, p = 0.19). There was a significant positive correlation between the methods' estimates of RMT, with PEST requiring significantly fewer stimuli. This study shows that the R-R and PEST methods have high intra-and inter-session reliability and the same precision, with PEST having the advantage over R-R in speed of estimation of RMT.
  • Item
    Thumbnail Image
    Individual differences in haemoglobin concentration influence bold fMRI functional connectivity and its correlation with cognition
    Ward, PGD ; Orchard, ER ; Oldham, S ; Arnatkeviciute, A ; Sforazzini, F ; Fornito, A ; Storey, E ; Egan, GF ; Jamadar, SD (ACADEMIC PRESS INC ELSEVIER SCIENCE, 2020-11-01)
    Resting-state connectivity measures the temporal coherence of the spontaneous neural activity of spatially distinct regions, and is commonly measured using BOLD-fMRI. The BOLD response follows neuronal activity, when changes in the relative concentration of oxygenated and deoxygenated haemoglobin cause fluctuations in the MRI T2* signal. Since the BOLD signal detects changes in relative concentrations of oxy/deoxy-haemoglobin, individual differences in haemoglobin levels may influence the BOLD signal-to-noise ratio in a manner independent of the degree of neural activity. In this study, we examined whether group differences in haemoglobin may confound measures of functional connectivity. We investigated whether relationships between measures of functional connectivity and cognitive performance could be influenced by individual variability in haemoglobin. Finally, we mapped the neuroanatomical distribution of the influence of haemoglobin on functional connectivity to determine where group differences in functional connectivity are manifest. In a cohort of 518 healthy elderly subjects (259 men), each sex group was median-split into two groups with high and low haemoglobin concentration. Significant differences were obtained in functional connectivity between the high and low haemoglobin groups for both men and women (Cohen's d 0.17 and 0.03 for men and women respectively). The haemoglobin connectome in males showed a widespread systematic increase in functional connectivity correlation values, whilst the female connectome showed predominantly parietal and subcortical increases and temporo-parietal decreases. Despite the haemoglobin groups having no differences in cognitive measures, significant differences in the linear relationships between cognitive performance and functional connectivity were obtained for all 5 cognitive tests in males, and 4 out of 5 tests in females. Our findings confirm that individual variability in haemoglobin levels that give rise to group differences are an important confounding variable in BOLD-fMRI-based studies of functional connectivity. Controlling for haemoglobin variability as a potentially confounding variable is crucial to ensure the reproducibility of human brain connectome studies, especially in studies that compare groups of individuals, compare sexes, or examine connectivity-cognition relationships.
  • Item
    Thumbnail Image
    Evidence for multiple bulbar and higher brain circuits processing sensory inputs from the respiratory system in humans
    Farrell, MJ ; Bautista, TG ; Liang, E ; Azzollini, D ; Egan, GF ; Mazzone, SB (WILEY, 2020-12)
    KEY POINTS: Unpleasant respiratory sensations contribute to morbidity in pulmonary disease. In rodents, these sensations are processed by nodose and jugular vagal sensory neurons, two distinct cell populations that differentially project to the airways and brainstem. Whether similar differences exist in bronchopulmonary sensory pathways in humans is unknown. We use functional magnetic resonance imaging during inhalation of capsaicin and ATP, showing that airway nodose pathways project centrally to the nucleus of the solitary tract, whereas jugular pathways input into the trigeminal brainstem nuclei. We also show differences between the efficacy of nodose and jugular stimuli to evoke cough and activity in motor control regions of the brain. Our data suggest that humans have two distinct vagal sensory neural systems governing airway sensations and this may have implications for the development of new antitussive therapies. ABSTRACT: In rodents, nodose vagal sensory neurons preferentially innervate the distal airways and terminate centrally in the nucleus of the solitary tract. By contrast, jugular vagal sensory neurons preferentially innervate the proximal airways and terminate in the paratrigeminal nucleus in the dorsolateral medulla. This differential organization suggests distinct roles for nodose and jugular pathways in respiratory sensory processing. However, it is unknown whether bronchopulmonary afferent pathways are similarly arranged in humans. We set out to investigate this using high resolution brainstem and whole brain functional magnetic resonance imaging in healthy human participants when they were inhaling stimuli known to differentially activate nodose and jugular pathways. Inhalation of capsaicin or ATP evoked respiratory sensations described as an urge-to-cough, although ATP was significantly less effective compared to capsaicin at evoking the motor act of coughing. The nodose and jugular neuron stimulant capsaicin increased blood oxygen level-dependent (BOLD) signals extending across the dorsomedial and dorsolateral medulla, encompassing regions containing both the nucleus of the solitary tract and the paratrigeminal nucleus. By contrast, at perceptually comparable stimulus intensities, the nodose-selective stimulant ATP resulted in BOLD signal intensity changes that were confined to the area of the nucleus of the solitary tract. During whole brain imaging, capsaicin demonstrated a wider distributed network of activity compared to ATP, with significantly increased activity in regions involved with motor control functions. These data suggest that functional and neuroanatomical differences in bronchopulmonary nodose and jugular sensory pathway organization are conserved in humans and also that this has implications for understanding the neurobiological mechanisms underpinning cough.
  • Item
    Thumbnail Image
    The effects of a single-session cathodal transcranial pulsed current stimulation on corticospinal excitability: A randomized sham-controlled double-blinded study
    Dissanayaka, T ; Zoghi, M ; Farrell, M ; Egan, G ; Jaberzadeh, S (WILEY, 2020-12)
    Transcranial pulsed current stimulation (tPCS) of the human motor cortex has received much attention in recent years. Although the effect of anodal tPCS with different frequencies has been investigated, the effect of cathodal tPCS (c-tPCS) has not been explored yet. Therefore, the aim of the present study was to investigate the effect of c-tPCS at 4 and 75 Hz frequencies on corticospinal excitability (CSE) and motor performance. In a randomized sham-controlled crossover design, fifteen healthy participants attended three experimental sessions and received either c-tPCS at 75 Hz, 4 Hz or sham with 1.5 mA for 15 min. Transcranial magnetic stimulation and grooved pegboard test were performed before, immediately after and 30 min after the completion of stimulation at rest. The findings indicate that c-tPCS at both 4 and 75 Hz significantly increased CSE compared to sham. Both c-tPCS at 75 and 4 Hz showed a significant increase in intracortical facilitation compared to sham, whereas the effect on short-interval intracortical inhibition was not significant. The c-tPCS at 4 Hz but not 75 Hz induced modulation of intracortical facilitation correlated with the CSE. Motor performance did not show any significant changes. These results suggest that, compared with sham stimulation, c-tPCS at both 4 and 75 Hz induces an increase in CSE.
  • Item
    Thumbnail Image
    Application of compressed sensing using chirp encoded 3D GRE and MPRAGE sequences
    Pawar, K ; Chen, Z ; Zhang, J ; Shah, NJ ; Egan, GF (WILEY, 2020-09)
    Abstract An implementation of Non‐Fourier chirp‐encoding in 3D Gradient Recalled Echo (GRE), susceptibility‐weighted imaging (SWI) and Magnetization Prepared Rapid Gradient Echo (MPRAGE) sequences is presented with compressive sensing reconstruction. 3D GRE and MPRAGE sequences were designed, in which the phase encoding (PE) direction was encoded with spatially selective chirp encoding Radio Frequency (RF) pulses, while the slice and the readout directions were Fourier encoded using gradients. During each excitation along the PE direction, a different spatially‐selective RF excitation pulse was used to encode the PE direction with a complete set of unitary chirp encoding basis. Multichannel compressive sensing reconstruction on the undersampled in vivo data demonstrated that images reconstructed from chirp encoded data were able to preserve the spatial resolution better than the Fourier encoding. The mean Structural Similarity (SSIM) across five subjects at the acceleration factor of 6, for chirp encoded MPRAGE was 0.934 compared to 0.912 for Fourier encoded MPRAGE. The implementation of prospective undersampling demonstrated the feasibility of using chirp encoding in clinical practice for accelerated imaging. The minimum intensity projection of the compressive sensing (CS) reconstructed susceptibility weighted images revealed that chirp encoding is able to delineate small vessels better than the Fourier encoding with the SSIM of 0.960 for chirp encoding compared to the SSIM of 0.949 for the Fourier encoding. Improved performance of chirp encoding for CS reconstruction and SWI, along with the feasibility of implementation makes them a practical candidate for clinical MRI scans.
  • Item
    No Preview Available
    International Brain Initiative: An Innovative Framework for Coordinated Global Brain Research Efforts.
    International Brain Initiative. Electronic address: j.g.bjaalie@medisin.uio.no, ; International Brain Initiative, (Elsevier BV, 2020-03-04)
  • Item
    Thumbnail Image
    UniCAR T cell immunotherapy enables efficient elimination of radioresistant cancer cells
    Arndt, C ; Loureiro, LR ; Feldmann, A ; Jureczek, J ; Bergmann, R ; Mathe, D ; Hegedues, N ; Berndt, N ; Koristka, S ; Mitwasi, N ; Fasslrinner, F ; Lamprecht, C ; Kegler, A ; Hoffmann, A ; Bartsch, T ; Koeseer, AS ; Egan, G ; Schmitz, M ; Horejsi, V ; Krause, M ; Dubrovska, A ; Bachmann, M (TAYLOR & FRANCIS INC, 2020)
    Induction or selection of radioresistant cancer (stem) cells following standard radiotherapy is presumably one of the major causes for recurrence of metastatic disease. One possibility to prevent tumor relapse is the application of targeted immunotherapies including, e.g., chimeric antigen receptor (CAR) T cells. In light of long-term remissions, it is highly relevant to clarify whether radioresistant cancer cells are susceptible to CAR T cell-mediated killing. To answer this question, we evaluated the anti-tumor activity of the switchable universal chimeric antigen receptor (UniCAR) system against highly radioresistant head and neck squamous cell carcinoma cells both in vitro and in vivo. Following specific UniCAR T cell engagement via EGFR or CD98 target modules, T cell effector mechanisms were induced including secretion of pro-inflammatory cytokines, up-regulation of granzyme B and perforin, as well as T cell proliferation. CD98- or EGFR-redirected UniCAR T cells further possess the capability to efficiently lyse radioresistant tumor cells. Observed anti-tumor effects were comparable to those against the radiosensitive parental cell lines. Finally, redirected UniCAR T cells significantly inhibited the growth of radioresistant cancer cells in immunodeficient mice. Taken together, our obtained data underline that the UniCAR system is able to overcome radioresistance. Thus, it represents an attractive technology for the development of combined radioimmunotherapeutic approaches that might improve the outcome of patients with metastatic radioresistant tumor diseases.