Anatomy and Neuroscience - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 32
  • Item
    Thumbnail Image
    Fungal-derived cues promote ocular autoimmunity through a Dectin-2/Card9-mediated mechanism
    Brown, BR ; Lee, EJ ; Snow, PE ; Vance, EE ; Iwakura, Y ; Ohno, N ; Miura, N ; Lin, X ; Brown, GD ; Wells, CA ; Smith, JR ; Caspi, RR ; Rosenzweig, HL (WILEY, 2017-12)
    Uveitis (intraocular inflammation) is a leading cause of loss of vision. Although its aetiology is largely speculative, it is thought to arise from complex genetic-environmental interactions that break immune tolerance to generate eye-specific autoreactive T cells. Experimental autoimmune uveitis (EAU), induced by immunization with the ocular antigen, interphotoreceptor retinoid binding protein (IRBP), in combination with mycobacteria-containing complete Freund's adjuvant (CFA), has many clinical and histopathological features of human posterior uveitis. Studies in EAU have focused on defining pathogenic CD4+ T cell effector responses, such as those of T helper type 17 (Th17) cells, but the innate receptor pathways precipitating development of autoreactive, eye-specific T cells remain poorly defined. In this study, we found that fungal-derived antigens possess autoimmune uveitis-promoting function akin to CFA in conventional EAU. The capacity of commensal fungi such as Candida albicans or Saccharomyces cerevisae to promote IRBP-triggered EAU was mediated by Card9. Because Card9 is an essential signalling molecule of a subgroup of C-type lectin receptors (CLRs) important in host defence, we evaluated further the proximal Card9-activating CLRs. Using single receptor-deficient mice we identified Dectin-2, but not Mincle or Dectin-1, as a predominant mediator of fungal-promoted uveitis. Conversely, Dectin-2 activation by α-mannan reproduced the uveitic phenotype of EAU sufficiently, in a process mediated by the Card9-coupled signalling axis and interleukin (IL)-17 production. Taken together, this report relates the potential of the Dectin-2/Card9-coupled pathway in ocular autoimmunity. Not only does it contribute to understanding of how innate immune receptors orchestrate T cell-mediated autoimmunity, it also reveals a previously unappreciated ability of fungal-derived signals to promote autoimmunity.
  • Item
    Thumbnail Image
    Characterization of Phenotypic and Transcriptional Differences in Human Pluripotent Stem Cells under 2D and 3D Culture Conditions
    Kamei, K-I ; Koyama, Y ; Tokunaga, Y ; Mashimo, Y ; Yoshioka, M ; Fockenberg, C ; Mosbergen, R ; Korn, O ; Wells, C ; Chen, Y (WILEY, 2016-11-23)
    Human pluripotent stem cells hold great promise for applications in drug discovery and regenerative medicine. Microfluidic technology is a promising approach for creating artificial microenvironments; however, although a proper 3D microenvironment is required to achieve robust control of cellular phenotypes, most current microfluidic devices provide only 2D cell culture and do not allow tuning of physical and chemical environmental cues simultaneously. Here, the authors report a 3D cellular microenvironment plate (3D-CEP), which consists of a microfluidic device filled with thermoresponsive poly(N-isopropylacrylamide)-β-poly(ethylene glycol) hydrogel (HG), which enables systematic tuning of both chemical and physical environmental cues as well as in situ cell monitoring. The authors show that H9 human embryonic stem cells (hESCs) and 253G1 human induced pluripotent stem cells in the HG/3D-CEP system maintain their pluripotent marker expression under HG/3D-CEP self-renewing conditions. Additionally, global gene expression analyses are used to elucidate small variations among different test environments. Interestingly, the authors find that treatment of H9 hESCs under HG/3D-CEP self-renewing conditions results in initiation of entry into the neural differentiation process by induction of PAX3 and OTX1 expression. The authors believe that this HG/3D-CEP system will serve as a versatile platform for developing targeted functional cell lines and facilitate advances in drug screening and regenerative medicine.
  • Item
    Thumbnail Image
    Exposure to chorioamnionitis alters the monocyte transcriptional response to the neonatal pathogen Staphylococcus epidermidis
    de Jong, E ; Hancock, DG ; Wells, C ; Richmond, P ; Simmer, K ; Burgner, D ; Strunk, T ; Currie, AJ (WILEY, 2018-09)
    Preterm infants are uniquely susceptible to late-onset sepsis that is frequently caused by the skin commensal Staphylococcus epidermidis. Innate immune responses, particularly from monocytes, are a key protective mechanism. Impaired cytokine production by preterm infant monocytes is well described, but few studies have comprehensively assessed the corresponding monocyte transcriptional response. Innate immune responses in preterm infants may be modulated by inflammation such as prenatal exposure to histologic chorioamnionitis which complicates 40-70% of preterm pregnancies. Chorioamnionitis alters the risk of late-onset sepsis, but its effect on monocyte function is largely unknown. Here, we aimed to determine the impact of exposure to chorioamnionitis on the proportions and phenotype of cord blood monocytes using flow cytometry, as well as their transcriptional response to live S. epidermidis. RNA-seq was performed on purified cord blood monocytes from very preterm infants (<32 weeks gestation, with and without chorioamnionitis-exposure) and term infants (37-40 weeks), pre- and postchallenge with live S. epidermidis. Preterm monocytes from infants without chorioamnionitis-exposure did not exhibit an intrinsically deficient transcriptional response to S. epidermidis compared to term infants. In contrast, chorioamnionitis-exposure was associated with hypo-responsive transcriptional phenotype regarding a subset of genes involved in antigen presentation and adaptive immunity. Overall, our findings suggest that prenatal exposure to inflammation may alter the risk of sepsis in preterm infants partly by modulation of monocyte responses to pathogens.
  • Item
    Thumbnail Image
    Ceruloplasmin Is a Novel Adipokine Which Is Overexpressed in Adipose Tissue of Obese Subjects and in Obesity-Associated Cancer Cells
    Arner, E ; Forrest, ARR ; Ehrlund, A ; Mejhert, N ; Itoh, M ; Kawaji, H ; Lassmann, T ; Laurencikiene, J ; Ryden, M ; Arner, P ; Wu, Q (PUBLIC LIBRARY SCIENCE, 2014-03-27)
    Obesity confers an increased risk of developing specific cancer forms. Although the mechanisms are unclear, increased fat cell secretion of specific proteins (adipokines) may promote/facilitate development of malignant tumors in obesity via cross-talk between adipose tissue(s) and the tissues prone to develop cancer among obese. We searched for novel adipokines that were overexpressed in adipose tissue of obese subjects as well as in tumor cells derived from cancers commonly associated with obesity. For this purpose expression data from human adipose tissue of obese and non-obese as well as from a large panel of human cancer cell lines and corresponding primary cells and tissues were explored. We found expression of ceruloplasmin to be the most enriched in obesity-associated cancer cells. This gene was also significantly up-regulated in adipose tissue of obese subjects. Ceruloplasmin is the body's main copper carrier and is involved in angiogenesis. We demonstrate that ceruloplasmin is a novel adipokine, which is produced and secreted at increased rates in obesity. In the obese state, adipose tissue contributed markedly (up to 22%) to the total circulating protein level. In summary, we have through bioinformatic screening identified ceruloplasmin as a novel adipokine with increased expression in adipose tissue of obese subjects as well as in cells from obesity-associated cancers. Whether there is a causal relationship between adipose overexpression of ceruloplasmin and cancer development in obesity cannot be answered by these cross-sectional comparisons.
  • Item
    Thumbnail Image
    CCL2 enhances pluripotency of human induced pluripotent stem cells by activating hypoxia related genes
    Hasegawa, Y ; Tang, D ; Takahashi, N ; Hayashizaki, Y ; Forrest, ARR ; Suzuki, H (NATURE PORTFOLIO, 2014-06-24)
    Standard culture of human induced pluripotent stem cells (hiPSCs) requires basic Fibroblast Growth Factor (bFGF) to maintain the pluripotent state, whereas hiPSC more closely resemble epiblast stem cells than true naïve state ES which requires LIF to maintain pluripotency. Here we show that chemokine (C-C motif) ligand 2 (CCL2) enhances the expression of pluripotent marker genes through the phosphorylation of the signal transducer and activator of transcription 3 (STAT3) protein. Moreover, comparison of transcriptomes between hiPSCs cultured with CCL2 versus with bFGF, we found that CCL2 activates hypoxia related genes, suggesting that CCL2 enhanced pluripotency by inducing a hypoxic-like response.Further, we show that hiPSCs cultured with CCL2 can differentiate at a higher efficiency than culturing withjust bFGF and we show CCL2 can be used in feeder-free conditions [corrected]. Taken together, our finding indicates the novel functions of CCL2 in enhancing its pluripotency in hiPSCs.
  • Item
    Thumbnail Image
    Application of Gene Expression Trajectories Initiated from ErbB Receptor Activation Highlights the Dynamics of Divergent Promoter Usage
    Carbajo, D ; Magi, S ; Itoh, M ; Kawaji, H ; Lassmann, T ; Arner, E ; Forrest, ARR ; Carninci, P ; Hayashizaki, Y ; Daub, CO ; Okada-Hatakeyama, M ; Mar, JC ; Ramchandran, R (PUBLIC LIBRARY SCIENCE, 2015-12-14)
    Understanding how cells use complex transcriptional programs to alter their fate in response to specific stimuli is an important question in biology. For the MCF-7 human breast cancer cell line, we applied gene expression trajectory models to identify the genes involved in driving cell fate transitions. We modified trajectory models to account for the scenario where cells were exposed to different stimuli, in this case epidermal growth factor and heregulin, to arrive at different cell fates, i.e. proliferation and differentiation respectively. Using genome-wide CAGE time series data collected from the FANTOM5 consortium, we identified the sets of promoters that were involved in the transition of MCF-7 cells to their specific fates versus those with expression changes that were generic to both stimuli. Of the 1,552 promoters identified, 1,091 had stimulus-specific expression while 461 promoters had generic expression profiles over the time course surveyed. Many of these stimulus-specific promoters mapped to key regulators of the ERK (extracellular signal-regulated kinases) signaling pathway such as FHL2 (four and a half LIM domains 2). We observed that in general, generic promoters peaked in their expression early on in the time course, while stimulus-specific promoters tended to show activation of their expression at a later stage. The genes that mapped to stimulus-specific promoters were enriched for pathways that control focal adhesion, p53 signaling and MAPK signaling while generic promoters were enriched for cell death, transcription and the cell cycle. We identified 162 genes that were controlled by an alternative promoter during the time course where a subset of 37 genes had separate promoters that were classified as stimulus-specific and generic. The results of our study highlighted the degree of complexity involved in regulating a cell fate transition where multiple promoters mapping to the same gene can demonstrate quite divergent expression profiles.
  • Item
    Thumbnail Image
    Multipotent human stromal cells isolated from cord blood, term placenta and adult bone marrow show distinct differences in gene expression pattern
    Matigian, N ; Brooke, G ; Zaibak, F ; Rossetti, T ; Kollar, K ; Pelekanos, R ; Heazlewood, C ; Mackay-Sim, A ; Wells, CA ; Atkinson, K (ELSEVIER SCIENCE BV, 2015-03)
    Multipotent mesenchymal stromal cells derived from human placenta (pMSCs), and unrestricted somatic stem cells (USSCs) derived from cord blood share many properties with human bone marrow-derived mesenchymal stromal cells (bmMSCs) and are currently in clinical trials for a wide range of clinical settings. Here we present gene expression profiles of human cord blood-derived unrestricted somatic stem cells (USSCs), human placental-derived mesenchymal stem cells (hpMSCs), and human bone marrow-derived mesenchymal stromal cells (bmMSCs), all derived from four different donors. The microarray data are available on the ArrayExpress database (www.ebi.ac.uk/arrayexpress) under accession number E-TABM-880. Additionally, the data has been integrated into a public portal, www.stemformatics.org. Our data provide a resource for understanding the differences in MSCs derived from different tissues.
  • Item
    Thumbnail Image
    Transcriptional ontogeny of first trimester human fetal and placental mesenchymal stem cells: Gestational age versus niche.
    Ryan, JM ; Matigian, N ; Pelekanos, RA ; Jesuadian, S ; Wells, CA ; Fisk, NM (Elsevier BV, 2014-12)
    Early fetal and placental MSCs have translationally-advantageous characteristics compared to later pregnancy MSCs. During the first trimester, the fetus and placenta grow rapidly with divergent developmental requirements, but studies comparing mesenchymal stem cells (MSCs) from different origins have paid little attention to the effect of gestational age over this temporal window. Here we present the transcriptome through first trimester development of MSC isolated from fetal bone marrow (BM) or placental structures. Samples were collected weekly from 8 to 12 weeks. The raw microarray data are available on the ArrayExpress database (www.ebi.ac.uk/arrayexpress) under accession number E-TABM-1224. Additionally, the data have been integrated into the stem cell collaboration platform www.Stemformatics.org. These data provide a valuable resource for developmental biology and stem cell investigation.
  • Item
    Thumbnail Image
    Analysis of the human monocyte-derived macrophage transcriptome and response to lipopolysaccharide provides new insights into genetic aetiology of inflammatory bowel disease
    Baillie, JK ; Arner, E ; Daub, C ; De Hoon, M ; Itoh, M ; Kawaji, H ; Lassmann, T ; Carninci, P ; Forrest, ARR ; Hayashizaki, Y ; Consortium, F ; Faulkner, GJ ; Wells, CA ; Rehli, M ; Pavli, P ; Summers, KM ; Hume, DA ; Cho, JH (PUBLIC LIBRARY SCIENCE, 2017-03)
    The FANTOM5 consortium utilised cap analysis of gene expression (CAGE) to provide an unprecedented insight into transcriptional regulation in human cells and tissues. In the current study, we have used CAGE-based transcriptional profiling on an extended dense time course of the response of human monocyte-derived macrophages grown in macrophage colony-stimulating factor (CSF1) to bacterial lipopolysaccharide (LPS). We propose that this system provides a model for the differentiation and adaptation of monocytes entering the intestinal lamina propria. The response to LPS is shown to be a cascade of successive waves of transient gene expression extending over at least 48 hours, with hundreds of positive and negative regulatory loops. Promoter analysis using motif activity response analysis (MARA) identified some of the transcription factors likely to be responsible for the temporal profile of transcriptional activation. Each LPS-inducible locus was associated with multiple inducible enhancers, and in each case, transient eRNA transcription at multiple sites detected by CAGE preceded the appearance of promoter-associated transcripts. LPS-inducible long non-coding RNAs were commonly associated with clusters of inducible enhancers. We used these data to re-examine the hundreds of loci associated with susceptibility to inflammatory bowel disease (IBD) in genome-wide association studies. Loci associated with IBD were strongly and specifically (relative to rheumatoid arthritis and unrelated traits) enriched for promoters that were regulated in monocyte differentiation or activation. Amongst previously-identified IBD susceptibility loci, the vast majority contained at least one promoter that was regulated in CSF1-dependent monocyte-macrophage transitions and/or in response to LPS. On this basis, we concluded that IBD loci are strongly-enriched for monocyte-specific genes, and identified at least 134 additional candidate genes associated with IBD susceptibility from reanalysis of published GWA studies. We propose that dysregulation of monocyte adaptation to the environment of the gastrointestinal mucosa is the key process leading to inflammatory bowel disease.
  • Item
    Thumbnail Image
    An epigenomic roadmap to induced pluripotency reveals DNA methylation as a reprogramming modulator
    Lee, D-S ; Shin, J-Y ; Tonge, PD ; Puri, MC ; Lee, S ; Park, H ; Lee, W-C ; Hussein, SMI ; Bleazard, T ; Yun, J-Y ; Kim, J ; Li, M ; Cloonan, N ; Wood, D ; Clancy, JL ; Mosbergen, R ; Yi, J-H ; Yang, K-S ; Kim, H ; Rhee, H ; Wells, CA ; Preiss, T ; Grimmond, SM ; Rogers, IM ; Nagy, A ; Seo, J-S (NATURE PUBLISHING GROUP, 2014-12)
    Reprogramming of somatic cells to induced pluripotent stem cells involves a dynamic rearrangement of the epigenetic landscape. To characterize this epigenomic roadmap, we have performed MethylC-seq, ChIP-seq (H3K4/K27/K36me3) and RNA-Seq on samples taken at several time points during murine secondary reprogramming as part of Project Grandiose. We find that DNA methylation gain during reprogramming occurs gradually, while loss is achieved only at the ESC-like state. Binding sites of activated factors exhibit focal demethylation during reprogramming, while ESC-like pluripotent cells are distinguished by extension of demethylation to the wider neighbourhood. We observed that genes with CpG-rich promoters demonstrate stable low methylation and strong engagement of histone marks, whereas genes with CpG-poor promoters are safeguarded by methylation. Such DNA methylation-driven control is the key to the regulation of ESC-pluripotency genes, including Dppa4, Dppa5a and Esrrb. These results reveal the crucial role that DNA methylation plays as an epigenetic switch driving somatic cells to pluripotency.