Anatomy and Neuroscience - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    Cerebrovascular disease, Alzheimer's disease biomarkers and longitudinal cognitive decline
    Yates, PA ; Villemagne, VL ; Ames, D ; Masters, CL ; Martins, RN ; Desmond, P ; Burnham, S ; Maruff, P ; Ellis, KA ; Rowe, CC (WILEY-BLACKWELL, 2016-06)
  • Item
    Thumbnail Image
    A Placebo-Controlled Trial of AQW051 in Patients With Moderate to Severe Levodopa-Induced Dyskinesia
    Trenkwalder, C ; Berg, D ; Rascol, O ; Eggert, K ; Ceballos-Baumann, A ; Corvol, J-C ; Storch, A ; Zhang, L ; Azulay, J-P ; Broussolle, E ; Defebvre, L ; Geny, C ; Gostkowski, M ; Stocchi, F ; Tranchant, C ; Derkinderen, P ; Durif, F ; Espay, AJ ; Feigin, A ; Houeto, J-L ; Schwarz, J ; Di Paolo, T ; Feuerbach, D ; Hockey, H-U ; Jaeger, J ; Jakab, A ; Johns, D ; Linazasoro, G ; Maruff, P ; Rozenberg, I ; Sovago, J ; Weiss, M ; Gomez-Mancilla, B (WILEY, 2016-07)
  • Item
    Thumbnail Image
    Nonvascular retinal imaging markers of preclinical Alzheimer's disease.
    Snyder, PJ ; Johnson, LN ; Lim, YY ; Santos, CY ; Alber, J ; Maruff, P ; Fernández, B (Wiley, 2016)
    INTRODUCTION: In patients with Alzheimer's disease (AD) and mild cognitive impairment, structural changes in the retina (i.e., reduced thicknesses of the ganglion cell and retinal nerve fiber layers and inclusion bodies that appear to contain beta-amyloid protein [Ab]) have been previously reported. We sought to explore whether anatomic retinal changes are detectable in the preclinical stage of AD. METHODS: A cross-sectional study (as part of an ongoing longitudinal cohort study) involving 63 cognitively normal adults, all of whom have a parent with AD and subjective memory complaints. We compared neocortical amyloid aggregation (florbetapir PET imaging) to retinal spectral domain optical coherence tomography (SD-OCT) markers of possible disease burden. Retinal biomarkers, including the number and surface area of retinal inclusion bodies and the thickness of retinal neuronal layers, were compared across groups with high vs. low neocortical beta-amyloid load. RESULTS: The surface area of inclusion bodies increased as a function of cortical amyloid burden. Additionally, there was a trend toward a selective volume increase in the inner plexiform layer (IPL; a layer rich in cholinergic activity) of the retina in Aβ+ relative to Aβ- participants, and IPL volume was correlated with the surface area of retinal inclusion bodies. DISCUSSION: These initial results suggest that retinal imaging may be a potential cost-effective and noninvasive technique that can be used to identify those at-risk for AD. Layer-specific changes in the IPL and their association with surface area of inclusion bodies are discussed as a possible reflection of early inflammatory processes associated with cholinergic disruption and concurrent Ab accumulation in the neocortex.
  • Item
    Thumbnail Image
    Sensitivity of composite scores to amyloid burden in preclinical Alzheimer's disease: Introducing the Z-scores of Attention, Verbal fluency, and Episodic memory for Nondemented older adults composite score.
    Lim, YY ; Snyder, PJ ; Pietrzak, RH ; Ukiqi, A ; Villemagne, VL ; Ames, D ; Salvado, O ; Bourgeat, P ; Martins, RN ; Masters, CL ; Rowe, CC ; Maruff, P (Wiley, 2016)
    INTRODUCTION: Cognitive composite scores developed for preclinical Alzheimer's disease (AD) often consist of multiple cognitive domains as they may provide greater sensitivity to detect β-amyloid (Aβ)-related cognitive decline than episodic memory (EM) composite scores alone. However, this has never been empirically tested. We compared the rate of cognitive decline associated with high Aβ (Aβ+) and very high Aβ (Aβ++) in cognitively normal (CN) older adults on three multidomain cognitive composite scores and one single-domain (EM) composite score. METHODS: CN older adults (n = 423) underwent Aβ neuroimaging and completed neuropsychological assessments at baseline, and at 18-, 36-, 54-, and 72-month follow-ups. Four cognitive composite scores were computed: the ADCS-PACC (ADCS-Preclinical Alzheimer Cognitive Composite), ADCS-PACC without the inclusion of the mini-mental state examination (MMSE), an EM composite, and the Z-scores of Attention, Verbal fluency, and Episodic memory for Nondemented older adults (ZAVEN) composite. RESULTS: Compared with Aβ+ CN older adults, Aβ++ CN older adults showed faster rates of decline across all cognitive composites, with the largest decline observed for ZAVEN composite (d = 1.07). Similarly, compared with Aβ- CN older adults, Aβ+ CN older adults also showed faster rates of cognitive decline, but only for the ADCS-PACC no MMSE (d = 0.43), EM (d = 0.53), and ZAVEN (d = 0.50) composites. DISCUSSION: Aβ-related cognitive decline is best detected using validated neuropsychological instruments. Removal of the MMSE from the ADCS-PACC and replacing it with a test of executive function (verbal fluency; i.e., the ZAVEN) rendered this composite more sensitive even in detecting Aβ-related cognitive decline between Aβ+ and Aβ++ CN older adults.