Anatomy and Neuroscience - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 1006
  • Item
    No Preview Available
    Selective recording of physiologically evoked neural activity in a mixed autonomic nerve using a minimally invasive array
    Payne, SC ; Osborne, PB ; Thompson, A ; Eiber, CD ; Keast, JR ; Fallon, JB (AIP Publishing LLC, 2023-12-01)
    Real-time closed-loop control of neuromodulation devices requires long-term monitoring of neural activity in the peripheral nervous system. Although many signal extraction methods exist, few are both clinically viable and designed for extracting small signals from fragile peripheral visceral nerves. Here, we report that our minimally invasive recording and analysis technology extracts low to negative signal to noise ratio (SNR) neural activity from a visceral nerve with a high degree of specificity for fiber type and class. Complex activity was recorded from the rat pelvic nerve that was physiologically evoked during controlled bladder filling and voiding, in an extensively characterized in vivo model that provided an excellent test bed to validate our technology. Urethane-anesthetized male rats (n = 12) were implanted with a four-electrode planar array and the bladder instrumented for continuous-flow cystometry, which measures urodynamic function by recording bladder pressure changes during constant infusion of saline. We demonstrated that differential bipolar recordings and cross-correlation analyses extracts afferent and efferent activity, and discriminated between subpopulations of fibers based on conduction velocity. Integrated Aδ afferent fiber activity correlated with bladder pressure during voiding (r2: 0.66 ± 0.06) and was not affected by activating nociceptive afferents with intravesical capsaicin (r2: 0.59 ± 0.14, P = 0.54, and n = 3). Collectively, these results demonstrate our minimally invasive recording and analysis technology is selective in extracting mixed neural activity with low/negative SNR. Furthermore, integrated afferent activity reliably correlates with bladder pressure and is a promising first step in developing closed-loop technology for bladder control.
  • Item
    Thumbnail Image
    Early Depletion of Neutrophils Reduces Retinal Inflammation and Neovascularization in Mice with Oxygen-Induced Retinopathy
    Deliyanti, D ; Suphapimol, V ; Ang, P ; Tang, X ; Jayasimhan, A ; Wilkinson-Berka, JL (MDPI, 2023-11)
    Retinal inflammation is a central feature of ocular neovascular diseases such as diabetic retinopathy and retinopathy of prematurity, but the contribution of neutrophils to this process is not fully understood. We studied oxygen-induced retinopathy (OIR) which develops in two phases, featuring hyperoxia-induced retinal vaso-obliteration in phase I, followed by retinal neovascularization in phase II. As neutrophils are acute responders to tissue damage, we evaluated whether neutrophil depletion with an anti-Ly6G mAb administered in phase I OIR influenced retinal inflammation and vascular injury. Neutrophils were measured in blood and spleen via flow cytometry, and myeloperoxidase, an indicator of neutrophil activity, was evaluated in the retina using Western blotting. Retinal vasculopathy was assessed by quantitating vaso-obliteration, neovascularization, vascular leakage, and VEGF levels. The inflammatory factors, TNF, MCP-1, and ICAM-1 were measured in retina. In the OIR controls, neutrophils were increased in the blood and spleen in phase I but not phase II OIR. In OIR, the anti-Ly6G mAb reduced neutrophils in the blood and spleen, and myeloperoxidase, inflammation, and vasculopathy in the retina. Our findings revealed that the early rise in neutrophils in OIR primes the retina for an inflammatory and angiogenic response that promotes severe damage to the retinal vasculature.
  • Item
    Thumbnail Image
    Faster Gastrointestinal Transit, Reduced Small Intestinal Smooth Muscle Tone and Dysmotility in the Nlgn3R451C Mouse Model of Autism
    Hosie, S ; Abo-Shaban, T ; Mou, K ; Balasuriya, GK ; Mohsenipour, M ; Alamoudi, MU ; Filippone, RT ; Belz, GT ; Franks, AE ; Bornstein, JC ; Nurgali, K ; Hill-Yardin, EL (MDPI, 2024-01)
    Individuals with autism often experience gastrointestinal issues but the cause is unknown. Many gene mutations that modify neuronal synapse function are associated with autism and therefore may impact the enteric nervous system that regulates gastrointestinal function. A missense mutation in the Nlgn3 gene encoding the cell adhesion protein Neuroligin-3 was identified in two brothers with autism who both experienced severe gastrointestinal dysfunction. Mice expressing this mutation (Nlgn3R451C mice) are a well-studied preclinical model of autism and show autism-relevant characteristics, including impaired social interaction and communication, as well as repetitive behaviour. We previously showed colonic dysmotility in response to GABAergic inhibition and increased myenteric neuronal numbers in the small intestine in Nlgn3R451C mice bred on a mixed genetic background. Here, we show that gut dysfunction is a persistent phenotype of the Nlgn3 R451C mutation in mice backcrossed onto a C57BL/6 background. We report that Nlgn3R451C mice show a 30.9% faster gastrointestinal transit (p = 0.0004) in vivo and have 6% longer small intestines (p = 0.04) compared to wild-types due to a reduction in smooth muscle tone. In Nlgn3R451C mice, we observed a decrease in resting jejunal diameter (proximal jejunum: 10.6% decrease, p = 0.02; mid: 9.8%, p = 0.04; distal: 11.5%, p = 0.009) and neurally regulated dysmotility as well as shorter durations of contractile complexes (mid: 25.6% reduction in duration, p = 0.009; distal: 30.5%, p = 0.004) in the ileum. In Nlgn3R451C mouse colons, short contractions were inhibited to a greater extent (57.2% by the GABAA antagonist, gabazine, compared to 40.6% in wild-type mice (p = 0.007). The inhibition of nitric oxide synthesis decreased the frequency of contractile complexes in the jejunum (WT p = 0.0006, Nlgn3R451C p = 0.002), but not the ileum, in both wild-type and Nlgn3R451C mice. These findings demonstrate that changes in enteric nervous system function contribute to gastrointestinal dysmotility in mice expressing the autism-associated R451C missense mutation in the Neuroligin-3 protein.
  • Item
    Thumbnail Image
    Imprinted gene alterations in the kidneys of growth restricted offspring may be mediated by a long non-coding RNA
    Doan, TNA ; Cowley, JM ; Phillips, AL ; Briffa, JF ; Leemaqz, SY ; Burton, RA ; Romano, T ; Wlodek, ME ; Bianco-Miotto, T (TAYLOR & FRANCIS INC, 2024-12-31)
    Altered epigenetic mechanisms have been previously reported in growth restricted offspring whose mothers experienced environmental insults during pregnancy in both human and rodent studies. We previously reported changes in the expression of the DNA methyltransferase Dnmt3a and the imprinted genes Cdkn1c (Cyclin-dependent kinase inhibitor 1C) and Kcnq1 (Potassium voltage-gated channel subfamily Q member 1) in the kidney tissue of growth restricted rats whose mothers had uteroplacental insufficiency induced on day 18 of gestation, at both embryonic day 20 (E20) and postnatal day 1 (PN1). To determine the mechanisms responsible for changes in the expression of these imprinted genes, we investigated DNA methylation of KvDMR1, an imprinting control region (ICR) that includes the promoter of the antisense long non-coding RNA Kcnq1ot1 (Kcnq1 opposite strand/antisense transcript 1). Kcnq1ot1 expression decreased by 51% in growth restricted offspring compared to sham at PN1. Interestingly, there was a negative correlation between Kcnq1ot1 and Kcnq1 in the E20 growth restricted group (Spearman's ρ = 0.014). No correlation was observed between Kcnq1ot1 and Cdkn1c expression in either group at any time point. Additionally, there was a 11.25% decrease in the methylation level at one CpG site within KvDMR1 ICR. This study, together with others in the literature, supports that long non-coding RNAs may mediate changes seen in tissues of growth restricted offspring.
  • Item
    Thumbnail Image
    AAV capsid bioengineering in primary human retina models
    Westhaus, A ; Eamegdool, SS ; Fernando, M ; Fuller-Carter, P ; Brunet, AA ; Miller, AL ; Rashwan, R ; Knight, M ; Daniszewski, M ; Lidgerwood, GE ; Pebay, A ; Hewitt, A ; Santilli, G ; Thrasher, AJ ; Carvalho, LS ; Gonzalez-Cordero, A ; Jamieson, RV ; Lisowski, L (NATURE PORTFOLIO, 2023-12-11)
    Adeno-associated viral (AAV) vector-mediated retinal gene therapy is an active field of both pre-clinical as well as clinical research. As with other gene therapy clinical targets, novel bioengineered AAV variants developed by directed evolution or rational design to possess unique desirable properties, are entering retinal gene therapy translational programs. However, it is becoming increasingly evident that predictive preclinical models are required to develop and functionally validate these novel AAVs prior to clinical studies. To investigate if, and to what extent, primary retinal explant culture could be used for AAV capsid development, this study performed a large high-throughput screen of 51 existing AAV capsids in primary human retina explants and other models of the human retina. Furthermore, we applied transgene expression-based directed evolution to develop novel capsids for more efficient transduction of primary human retina cells and compared the top variants to the strongest existing benchmarks identified in the screening described above. A direct side-by-side comparison of the newly developed capsids in four different in vitro and ex vivo model systems of the human retina allowed us to identify novel AAV variants capable of high transgene expression in primary human retina cells.
  • Item
    Thumbnail Image
    Psychometric Performance Comparison of the Adapted versus Original Versions of the EQ-5D-Y-3L and -Y-5L in Proxy Respondents for 2-to 4-Year-Olds
    van Heusden, A ; Rivero-Arias, O ; Herdman, M ; Hiscock, H ; Devlin, N ; Dalziel, K (ADIS INT LTD, 2024-01-18)
    INTRODUCTION: Few preference-weighted instruments are available to measure health-related quality of life in young children (2-4 years of age). The EQ-5D-Y-3L and EQ-5D-Y-5L were recently modified for this purpose. OBJECTIVE: The aim of this study was to test the psychometric properties of these adapted versions for use with parent proxies of children aged 2-4 years and to compare their performance with the original versions. It was hypothesised that the adapted instrument wording would result in improved psychometric performance. METHODS: Survey data of children aged 2-4 years were obtained from the Australian Paediatric Multi-Instrument Comparison study. Distributional and psychometric properties tested included feasibility, convergence, distribution of level scores, ceiling effects, known-group validity (Cohen's D effect sizes for prespecified groups defined by the presence/absence of special healthcare needs [SHCNs]), test-retest reliability (intraclass correlation coefficients [ICCs]), and responsiveness (standardised response mean [SRM] effect sizes for changes in health). Level sum scores were used to provide summary outcomes. Supplementary analysis using utility scores (from the Swedish EQ-5D-Y-3L value set) were conducted for the adapted and original EQ-5D-Y-3L, and no value sets were available for the EQ-5D-Y-5L. RESULTS: A total of 842 parents of children aged 2-4 years completed the survey. All instruments were easy to complete. There was strong convergence between the adapted and original EQ-5D-Y-3L and EQ-5D-Y-5L. The adapted EQ-5D-Y-3L and adapted EQ-5D-Y-5L showed more responses in the severe levels of the five EQ-5D-Y dimensions, particularly in the usual activity and mobility dimensions (EQ-5D-Y-5L: mobility level 1: adapted n = 478 [83%], original n = 253 [94%]; mobility level 4/5: adapted n = 17 [2.9%], original n = 4 [1.5%)]). The difference in the distribution of responses was more evident in children with SHCNs. Assessment of known-group validity showed a greater effect size for the adapted EQ-5D-Y-3L and adapted EQ-5D-Y-5L compared with the original instruments (EQ-5D-Y-5L: adapted Cohen's D = 1.01, original Cohen's D = 0.83) between children with and without SHCNs. The adapted EQ-5D-Y-3L and adapted EQ-5D-Y-5L showed improved reliability at 4-week follow-up, with improved ICCs (EQ-5D-Y-5L: adapted ICC = 0.83, original ICC = 0.44). The responsiveness of all instruments moved in the hypothesised direction for better or worse health at follow-up. Probability of superiority analysis showed little/no differences between the adapted and original EQ-5D-Y-3L and EQ-5D-Y-5L. Supplementary psychometric analysis of the adapted and original EQ-5D-Y-3L using utilities showed comparable findings with analyses using level sum scores. CONCLUSIONS: The findings suggest improved psychometric performance of the adapted version of the EQ-5D-Y-3L and EQ-5D-Y-5L in children aged 2-4 years compared with the original versions.
  • Item
    Thumbnail Image
    Microglial ferroptotic stress causes non-cell autonomous neuronal death
    Liddell, JR ; Hilton, JBW ; Kysenius, K ; Billings, JL ; Nikseresht, S ; Mcinnes, LE ; Hare, DJ ; Paul, B ; Mercer, SW ; Belaidi, AA ; Ayton, S ; Roberts, BR ; Beckman, JS ; Mclean, CA ; White, AR ; Donnelly, PS ; Bush, AI ; Crouch, PJ (BMC, 2024-02-05)
    BACKGROUND: Ferroptosis is a form of regulated cell death characterised by lipid peroxidation as the terminal endpoint and a requirement for iron. Although it protects against cancer and infection, ferroptosis is also implicated in causing neuronal death in degenerative diseases of the central nervous system (CNS). The precise role for ferroptosis in causing neuronal death is yet to be fully resolved. METHODS: To elucidate the role of ferroptosis in neuronal death we utilised co-culture and conditioned medium transfer experiments involving microglia, astrocytes and neurones. We ratified clinical significance of our cell culture findings via assessment of human CNS tissue from cases of the fatal, paralysing neurodegenerative condition of amyotrophic lateral sclerosis (ALS). We utilised the SOD1G37R mouse model of ALS and a CNS-permeant ferroptosis inhibitor to verify pharmacological significance in vivo. RESULTS: We found that sublethal ferroptotic stress selectively affecting microglia triggers an inflammatory cascade that results in non-cell autonomous neuronal death. Central to this cascade is the conversion of astrocytes to a neurotoxic state. We show that spinal cord tissue from human cases of ALS exhibits a signature of ferroptosis that encompasses atomic, molecular and biochemical features. Further, we show the molecular correlation between ferroptosis and neurotoxic astrocytes evident in human ALS-affected spinal cord is recapitulated in the SOD1G37R mouse model where treatment with a CNS-permeant ferroptosis inhibitor, CuII(atsm), ameliorated these markers and was neuroprotective. CONCLUSIONS: By showing that microglia responding to sublethal ferroptotic stress culminates in non-cell autonomous neuronal death, our results implicate microglial ferroptotic stress as a rectifiable cause of neuronal death in neurodegenerative disease. As ferroptosis is currently primarily regarded as an intrinsic cell death phenomenon, these results introduce an entirely new pathophysiological role for ferroptosis in disease.
  • Item
    No Preview Available
    Evidence for decreased copper associated with demyelination in the corpus callosum of cuprizone-treated mice
    Hilton, JBW ; Kysenius, K ; Liddell, JR ; Mercer, SW ; Hare, DJ ; Buncic, G ; Paul, B ; Wang, Y ; Murray, SS ; Kilpatrick, TJ ; White, AR ; Donnelly, PS ; Crouch, PJ (OXFORD UNIV PRESS, 2024-01-05)
    Demyelination within the central nervous system (CNS) is a significant feature of debilitating neurological diseases such as multiple sclerosis and administering the copper-selective chelatorcuprizone to mice is widely used to model demyelination in vivo. Conspicuous demyelination within the corpus callosum is generally attributed to cuprizone's ability to restrict copper availability in this vulnerable brain region. However, the small number of studies that have assessed copper in brain tissue from cuprizone-treated mice have produced seemingly conflicting outcomes, leaving the role of CNS copper availability in demyelination unresolved. Herein we describe our assessment of copper concentrations in brain samples from mice treated with cuprizone for 40 d. Importantly, we applied an inductively coupled plasma mass spectrometry methodology that enabled assessment of copper partitioned into soluble and insoluble fractions within distinct brain regions, including the corpus callosum. Our results show that cuprizone-induced demyelination in the corpus callosum was associated with decreased soluble copper in this brain region. Insoluble copper in the corpus callosum was unaffected, as were pools of soluble and insoluble copper in other brain regions. Treatment with the blood-brain barrier permeant copper compound CuII(atsm) increased brain copper levels and this was most pronounced in the soluble fraction of the corpus callosum. This effect was associated with significant mitigation of cuprizone-induced demyelination. These results provide support for the involvement of decreased CNS copper availability in demyelination in the cuprizone model. Relevance to human demyelinating disease is discussed.
  • Item
    No Preview Available
    Signaling pathways underlying TGF-β mediated suppression of IL-12A gene expression in monocytes.
    Hourani, T ; Eivazitork, M ; Balendran, T ; Mc Lee, K ; Hamilton, JA ; Zhu, H-J ; Iaria, J ; Morokoff, AP ; Luwor, RB ; Achuthan, AA (Elsevier BV, 2024-02)
    Transforming growth factor-β (TGF-β) is a pleiotropic cytokine essential for multiple biological processes, including the regulation of inflammatory and immune responses. One of the important functions of TGF-β is the suppression of the proinflammatory cytokine interleukin-12 (IL-12), which is crucial for mounting an anti-tumorigenic response. Although the regulation of the IL-12p40 subunit (encoded by the IL-12B gene) of IL-12 has been extensively investigated, the knowledge of IL-12p35 (encoded by IL-12A gene) subunit regulation is relatively limited. This study investigates the molecular regulation of IL-12A by TGF-β-activated signaling pathways in THP-1 monocytes. Our study identifies a complex regulation of IL-12A gene expression by TGF-β, which involves multiple cellular signaling pathways, such as Smad2/3, NF-κB, p38 and JNK1/2. Pharmacological inhibition of NF-κB signaling decreased IL-12A expression, while blocking the Smad2/3 signaling pathway by overexpression of Smad7 and inhibiting JNK1/2 signaling with a pharmacological inhibitor, SP600125, increased its expression. The elucidated signaling pathways that regulate IL-12A gene expression potentially provide new therapeutic targets to increase IL-12 levels in the tumor microenvironment.
  • Item
    No Preview Available
    Canthin-6-One Inhibits Developmental and Tumour-Associated Angiogenesis in Zebrafish
    Ng, MF ; Viana, JDS ; Tan, PJ ; Britto, DD ; Choi, SB ; Kobayashi, S ; Samat, N ; Song, DSS ; Ogawa, S ; Parhar, IS ; Astin, JW ; Hogan, BM ; Patel, V ; Okuda, KS (MDPI, 2024-01)
    Tumour-associated angiogenesis play key roles in tumour growth and cancer metastasis. Consequently, several anti-angiogenic drugs such as sunitinib and axitinib have been approved for use as anti-cancer therapies. However, the majority of these drugs target the vascular endothelial growth factor A (VEGFA)/VEGF receptor 2 (VEGFR2) pathway and have shown mixed outcome, largely due to development of resistances and increased tumour aggressiveness. In this study, we used the zebrafish model to screen for novel anti-angiogenic molecules from a library of compounds derived from natural products. From this, we identified canthin-6-one, an indole alkaloid, which inhibited zebrafish intersegmental vessel (ISV) and sub-intestinal vessel development. Further characterisation revealed that treatment of canthin-6-one reduced ISV endothelial cell number and inhibited proliferation of human umbilical vein endothelial cells (HUVECs), suggesting that canthin-6-one inhibits endothelial cell proliferation. Of note, canthin-6-one did not inhibit VEGFA-induced phosphorylation of VEGFR2 in HUVECs and downstream phosphorylation of extracellular signal-regulated kinase (Erk) in leading ISV endothelial cells in zebrafish, suggesting that canthin-6-one inhibits angiogenesis independent of the VEGFA/VEGFR2 pathway. Importantly, we found that canthin-6-one impairs tumour-associated angiogenesis in a zebrafish B16F10 melanoma cell xenograft model and synergises with VEGFR inhibitor sunitinib malate to inhibit developmental angiogenesis. In summary, we showed that canthin-6-one exhibits anti-angiogenic properties in both developmental and pathological contexts in zebrafish, independent of the VEGFA/VEGFR2 pathway and demonstrate that canthin-6-one may hold value for further development as a novel anti-angiogenic drug.