Anatomy and Neuroscience - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 12
  • Item
    Thumbnail Image
    Plasma p-tau181/Aβ1-42 ratio predicts Aβ-PET status and correlates with CSF-p-tau181/Aβ1-42 and future cognitive decline
    Fowler, CJ ; Stoops, E ; Rainey-Smith, SR ; Vanmechelen, E ; Vanbrabant, J ; Dewit, N ; Mauroo, K ; Maruff, P ; Rowe, CC ; Fripp, J ; Li, Q-X ; Bourgeat, P ; Collins, SJ ; Martins, RN ; Masters, CL ; Doecke, JD (WILEY, 2022)
    BACKGROUND: In Alzheimer's disease (AD), plasma amyloid beta (Aβ)1-42 and phosphorylated tau (p-tau) predict high amyloid status from Aβ positron emission tomography (PET); however, the extent to which combination of these plasma assays can predict remains unknown. METHODS: Prototype Simoa assays were used to measure plasma samples from participants who were either cognitively normal (CN) or had mild cognitive impairment (MCI)/AD in the Australian Imaging, Biomarkers and Lifestyle (AIBL) study. RESULTS: The p-tau181/Aβ1-42 ratio showed the best prediction of Aβ-PET across all participants (area under the curve [AUC] = 0.905, 95% confidence interval [CI]: 0.86-0.95) and in CN (AUC = 0.873; 0.80-0.94), and symptomatic (AUC = 0.908; 0.82-1.00) adults. Plasma p-tau181/Aβ1-42 ratio correlated with cerebrospinal fluid (CSF) p-tau181 (Elecsys, Spearman's ρ = 0.74, P < 0.0001) and predicted abnormal CSF Aβ (AUC = 0.816; 0.74-0.89). The p-tau181/Aβ1-42 ratio also predicted future rates of cognitive decline assessed by AIBL Preclinical Alzheimer Cognitive Composite or Clinical Dementia Rating Sum of Boxes (P < 0.0001). DISCUSSION: Plasma p-tau181/Aβ1-42 ratio predicted both Aβ-PET status and cognitive decline, demonstrating potential as both a diagnostic aid and as a screening and prognostic assay for preclinical AD trials.
  • Item
    No Preview Available
    Association of Elevated Amyloid and Tau Positron Emission Tomography Signal With Near-Term Development of Alzheimer Disease Symptoms in Older Adults Without Cognitive Impairment
    Strikwerda-Brown, C ; Hobbs, DA ; Gonneaud, J ; St-Onge, F ; Binette, AP ; Ozlen, H ; Provost, K ; Soucy, J-P ; Buckley, RF ; Benzinger, TLS ; Morris, JC ; Villemagne, VL ; Dore, V ; Sperling, RA ; Johnson, KA ; Rowe, CC ; Gordon, BA ; Poirier, J ; Breitner, JCS ; Villeneuve, S (AMER MEDICAL ASSOC, 2022-10)
    IMPORTANCE: National Institute on Aging-Alzheimer's Association (NIA-AA) workgroups have proposed biological research criteria intended to identify individuals with preclinical Alzheimer disease (AD). OBJECTIVE: To assess the clinical value of these biological criteria to identify older individuals without cognitive impairment who are at near-term risk of developing symptomatic AD. DESIGN, SETTING, AND PARTICIPANTS: This longitudinal cohort study used data from 4 independent population-based cohorts (PREVENT-AD, HABS, AIBL, and Knight ADRC) collected between 2003 and 2021. Participants were older adults without cognitive impairment with 1 year or more of clinical observation after amyloid β and tau positron emission tomography (PET). Median clinical follow-up after PET ranged from 1.94 to 3.66 years. EXPOSURES: Based on binary assessment of global amyloid burden (A) and a composite temporal region of tau PET uptake (T), participants were stratified into 4 groups (A+T+, A+T-, A-T+, A-T-). Presence (+) or absence (-) of neurodegeneration (N) was assessed using temporal cortical thickness. MAIN OUTCOMES AND MEASURES: Each cohort was analyzed separately. Primary outcome was clinical progression to mild cognitive impairment (MCI), identified by a Clinical Dementia Rating score of 0.5 or greater in Knight ADRC and by consensus committee review in the other cohorts. Clinical raters were blind to imaging, genetic, and fluid biomarker data. A secondary outcome was cognitive decline, based on a slope greater than 1.5 SD below the mean of an independent subsample of individuals without cognitive impairment. Outcomes were compared across the biomarker groups. RESULTS: Among 580 participants (PREVENT-AD, 128; HABS, 153; AIBL, 48; Knight ADRC, 251), mean (SD) age ranged from 67 (5) to 76 (6) years across cohorts, with between 55% (137/251) and 74% (95/128) female participants. Across cohorts, 33% to 83% of A+T+ participants progressed to MCI during follow-up (mean progression time, 2-2.72 years), compared with less than 20% of participants in other biomarker groups. Progression further increased to 43% to 100% when restricted to A+T+(N+) individuals. Cox proportional hazard ratios for progression to MCI in the A+T+ group vs other biomarker groups were all 5 or greater. Many A+T+ nonprogressors also showed longitudinal cognitive decline, while cognitive trajectories in other groups remained predominantly stable. CONCLUSIONS AND RELEVANCE: The clinical prognostic value of NIA-AA research criteria was confirmed in 4 independent cohorts, with most A+T+(N+) older individuals without cognitive impairment developing AD symptoms within 2 to 3 years.
  • Item
    Thumbnail Image
    Visually Identified Tau 18F-MK6240 PET Patterns in Symptomatic Alzheimer's Disease
    Krishnadas, N ; Huang, K ; Schultz, SA ; Dore, V ; Bourgeat, P ; Goh, AMY ; Lamb, F ; Bozinovski, S ; Burnham, SC ; Robertson, JS ; Laws, SM ; Maruff, P ; Masters, CL ; Villemagne, VL ; Rowe, CC ; Jacobs, H (IOS PRESS, 2022)
    BACKGROUND: In Alzheimer's disease, heterogeneity has been observed in the postmortem distribution of tau neurofibrillary tangles. Visualizing the topography of tau in vivo may facilitate clinical trials and clinical practice. OBJECTIVE: This study aimed to investigate whether tau distribution patterns that are limited to mesial temporal lobe (MTL)/limbic regions, and those that spare MTL regions, can be visually identified using 18F-MK6240, and whether these patterns are associated with different demographic and cognitive profiles. METHODS: Tau 18F-MK6240 PET images of 151 amyloid-β positive participants with mild cognitive impairment (MCI) and dementia were visually rated as: tau negative, limbic predominant (LP), MTL-sparing, and Typical by two readers. Groups were evaluated for differences in age, APOE ɛ4 carriage, hippocampal volumes, and cognition (MMSE, composite memory and non-memory scores). Voxel-wise contrasts were also performed. RESULTS: Visual rating resulted in 59.6% classified as Typical, 17.9% as MTL-sparing, 9.9% LP, and 12.6% as tau negative. Intra-rater and inter-rater reliability was strong (Cohen's kappa values of 0.89 and 0.86 respectively). Tracer retention in a "hook"-like distribution on sagittal sequences was observed in the LP and Typical groups. The visually classified MTL-sparing group had lower APOE ɛ4 carriage and relatively preserved hippocampal volumes. Higher MTL tau was associated with greater amnestic cognitive impairment. High cortical tau was associated with greater impairments on non-memory domains of cognition, and individuals with high cortical tau were more likely to have dementia than MCI. CONCLUSION: Tau distribution patterns can be visually identified using 18F-MK6240 PET and are associated with differences in APOE ɛ4 carriage, hippocampal volumes, and cognition.
  • Item
    Thumbnail Image
    Identification of Leukocyte Surface P2X7 as a Biomarker Associated with Alzheimer's Disease
    Li, Y ; Huang, X ; Fowler, C ; Lim, YY ; Laws, SM ; Faux, N ; Doecke, JD ; Trounson, B ; Pertile, K ; Rumble, R ; Dore, V ; Villemagne, VL ; Rowe, CC ; Wiley, JS ; Maruff, P ; Masters, CL ; Gu, BJ (MDPI, 2022-07)
    Alzheimer's disease (AD) has shown altered immune responses in the periphery. We studied P2X7 (a proinflammatory receptor and a scavenger receptor) and two integrins, CD11b and CD11c, on the surface of circulating leukocytes and analysed their associations with Aβ-PET, brain atrophy, neuropsychological assessments, and cerebrospinal fluid (CSF) biomarkers. Total 287 age-matched, sex-balanced participants were recruited in a discovery cohort and two validation cohorts through the AIBL study and studied using tri-colour flow cytometry. Our results demonstrated reduced expressions of P2X7, CD11b, and CD11c on leukocytes, particularly monocytes, in Aβ +ve cases compared with Aβ -ve controls. P2X7 and integrin downregulation was observed at pre-clinical stage of AD and stayed low throughout disease course. We further constructed a polygenic risk score (PRS) model based on 12 P2RX7 risk alleles to assess the genetic impact on P2X7 function in AIBL and ADNI cohorts. No significant association was identified between the P2RX7 gene and AD, indicating that P2X7 downregulation in AD is likely caused by environmental changes rather than genetic factors. In conclusion, the downregulation of P2X7 and integrins at pre-clinical stage of AD indicates altered pro-inflammatory responses, phagocytic functions, and migrating capabilities of circulating monocytes in early AD pathogenesis. Our study not only improves our understanding of peripheral immune involvement in early stage of AD but also provides more insights into novel biomarker development, diagnosis, and prognosis of AD.
  • Item
    Thumbnail Image
    Higher Coffee Consumption Is Associated With Slower Cognitive Decline and Less Cerebral Aβ-Amyloid Accumulation Over 126 Months: Data From the Australian Imaging, Biomarkers, and Lifestyle Study
    Gardener, SL ; Rainey-Smith, SR ; Villemagne, VL ; Fripp, J ; Dore, V ; Bourgeat, P ; Taddei, K ; Fowler, C ; Masters, CL ; Maruff, P ; Rowe, CC ; Ames, D ; Martins, RN ; AIBL, I (FRONTIERS MEDIA SA, 2021-11-19)
    Background: Worldwide, coffee is one of the most popular beverages consumed. Several studies have suggested a protective role of coffee, including reduced risk of Alzheimer's disease (AD). However, there is limited longitudinal data from cohorts of older adults reporting associations of coffee intake with cognitive decline, in distinct domains, and investigating the neuropathological mechanisms underpinning any such associations. Methods: The aim of the current study was to investigate the relationship between self-reported habitual coffee intake, and cognitive decline assessed using a comprehensive neuropsychological battery in 227 cognitively normal older adults from the Australian Imaging, Biomarkers, and Lifestyle (AIBL) study, over 126 months. In a subset of individuals, we also investigated the relationship between habitual coffee intake and cerebral Aβ-amyloid accumulation (n = 60) and brain volumes (n = 51) over 126 months. Results: Higher baseline coffee consumption was associated with slower cognitive decline in executive function, attention, and the AIBL Preclinical AD Cognitive Composite (PACC; shown reliably to measure the first signs of cognitive decline in at-risk cognitively normal populations), and lower likelihood of transitioning to mild cognitive impairment or AD status, over 126 months. Higher baseline coffee consumption was also associated with slower Aβ-amyloid accumulation over 126 months, and lower risk of progressing to "moderate," "high," or "very high" Aβ-amyloid burden status over the same time-period. There were no associations between coffee intake and atrophy in total gray matter, white matter, or hippocampal volume. Discussion: Our results further support the hypothesis that coffee intake may be a protective factor against AD, with increased coffee consumption potentially reducing cognitive decline by slowing cerebral Aβ-amyloid accumulation, and thus attenuating the associated neurotoxicity from Aβ-amyloid-mediated oxidative stress and inflammatory processes. Further investigation is required to evaluate whether coffee intake could be incorporated as a modifiable lifestyle factor aimed at delaying AD onset.
  • Item
    Thumbnail Image
    Using imputation to provide harmonized longitudinal measures of cognition across AIBL and ADNI
    Shishegar, R ; Cox, T ; Rolls, D ; Bourgeat, P ; Dore, V ; Lamb, F ; Robertson, J ; Laws, SM ; Porter, T ; Fripp, J ; Tosun, D ; Maruff, P ; Savage, G ; Rowe, CC ; Masters, CL ; Weiner, MW ; Villemagne, VL ; Burnham, SC (NATURE PORTFOLIO, 2021-12-10)
    To improve understanding of Alzheimer's disease, large observational studies are needed to increase power for more nuanced analyses. Combining data across existing observational studies represents one solution. However, the disparity of such datasets makes this a non-trivial task. Here, a machine learning approach was applied to impute longitudinal neuropsychological test scores across two observational studies, namely the Australian Imaging, Biomarkers and Lifestyle Study (AIBL) and the Alzheimer's Disease Neuroimaging Initiative (ADNI) providing an overall harmonised dataset. MissForest, a machine learning algorithm, capitalises on the underlying structure and relationships of data to impute test scores not measured in one study aligning it to the other study. Results demonstrated that simulated missing values from one dataset could be accurately imputed, and that imputation of actual missing data in one dataset showed comparable discrimination (p < 0.001) for clinical classification to measured data in the other dataset. Further, the increased power of the overall harmonised dataset was demonstrated by observing a significant association between CVLT-II test scores (imputed for ADNI) with PET Amyloid-β in MCI APOE-ε4 homozygotes in the imputed data (N = 65) but not for the original AIBL dataset (N = 11). These results suggest that MissForest can provide a practical solution for data harmonization using imputation across studies to improve power for more nuanced analyses.
  • Item
    Thumbnail Image
    Fifteen Years of the Australian Imaging, Biomarkers and Lifestyle (AIBL) Study: Progress and Observations from 2,359 Older Adults Spanning the Spectrum from Cognitive Normality to Alzheimer's Disease
    Fowler, C ; Rainey-Smith, SR ; Bird, S ; Bomke, J ; Bourgeat, P ; Brown, BM ; Burnham, SC ; Bush, A ; Chadunow, C ; Collins, S ; Doecke, J ; Dore, V ; Ellis, KA ; Evered, L ; Fazlollahi, A ; Fripp, J ; Gardener, SL ; Gibson, S ; Grenfell, R ; Harrison, E ; Head, R ; Jin, L ; Kamer, A ; Lamb, F ; Lautenschlager, NT ; Laws, SM ; Li, Q-X ; Lim, L ; Lim, YY ; Louey, A ; Macaulay, SL ; Mackintosh, L ; Martins, RN ; Maruff, P ; Masters, CL ; McBride, S ; Milicic, L ; Peretti, M ; Pertile, K ; Porter, T ; Radler, M ; Rembach, A ; Robertson, J ; Rodrigues, M ; Rowe, CC ; Rumble, R ; Salvado, O ; Savage, G ; Silbert, B ; Soh, M ; Sohrabi, HR ; Taddei, K ; Taddei, T ; Thai, C ; Trounson, B ; Tyrrell, R ; Vacher, M ; Varghese, S ; Villemagne, VL ; Weinborn, M ; Woodward, M ; Xia, Y ; Ames, D (IOS PRESS, 2021)
    BACKGROUND: The Australian Imaging, Biomarkers and Lifestyle (AIBL) Study commenced in 2006 as a prospective study of 1,112 individuals (768 cognitively normal (CN), 133 with mild cognitive impairment (MCI), and 211 with Alzheimer's disease dementia (AD)) as an 'Inception cohort' who underwent detailed ssessments every 18 months. Over the past decade, an additional 1247 subjects have been added as an 'Enrichment cohort' (as of 10 April 2019). OBJECTIVE: Here we provide an overview of these Inception and Enrichment cohorts of more than 8,500 person-years of investigation. METHODS: Participants underwent reassessment every 18 months including comprehensive cognitive testing, neuroimaging (magnetic resonance imaging, MRI; positron emission tomography, PET), biofluid biomarkers and lifestyle evaluations. RESULTS: AIBL has made major contributions to the understanding of the natural history of AD, with cognitive and biological definitions of its three major stages: preclinical, prodromal and clinical. Early deployment of Aβ-amyloid and tau molecular PET imaging and the development of more sensitive and specific blood tests have facilitated the assessment of genetic and environmental factors which affect age at onset and rates of progression. CONCLUSION: This fifteen-year study provides a large database of highly characterized individuals with longitudinal cognitive, imaging and lifestyle data and biofluid collections, to aid in the development of interventions to delay onset, prevent or treat AD. Harmonization with similar large longitudinal cohort studies is underway to further these aims.
  • Item
    Thumbnail Image
    Longitudinal Trajectories in Cortical Thickness and Volume Atrophy: Superior Cognitive Performance Does Not Protect Against Brain Atrophy in Older Adults
    Gardener, SL ; Weinborn, M ; Sohrabi, HR ; Doecke, JD ; Bourgeat, P ; Rainey-Smith, SR ; Shen, K-K ; Fripp, J ; Taddei, K ; Maruff, P ; Salvado, O ; Savage, G ; Ames, D ; Masters, CL ; Rowe, CC ; Martins, RN ; O’Bryant, S (IOS PRESS, 2021)
    BACKGROUND: Previous research has identified a small subgroup of older adults that maintain a high level of cognitive functioning well into advanced age. Investigation of those with superior cognitive performance (SCP) for their age is important, as age-related decline has previously been thought to be inevitable. OBJECTIVE: Preservation of cortical thickness and volume was evaluated in 76 older adults with SCP and 100 typical older adults (TOAs) assessed up to five times over six years. METHODS: Regions of interest (ROIs) found to have been associated with super-aging status (a construct similar to SCP status) in previous literature were investigated, followed by a discovery phase analyses of additional regions. SCPs were aged 70 + at baseline, scoring at/above normative memory (CVLT-II) levels for demographically similar individuals aged 30-44 years old, and in the unimpaired range for all other cognitive domains over the course of the study. RESULTS: In linear mixed models, following adjustment for multiple comparisons, there were no significant differences between rates of thinning or volume atrophy between SCPs and TOAs in previously identified ROIs, or the discovery phase analyses. With only amyloid-β negative individuals in the analyses, again there were no significant differences between SCPs and TOAs. CONCLUSION: The increased methodological rigor in classifying groups, together with the influence of cognitive reserve, are discussed as potential factors accounting for our findings as compared to the extant literature on those with superior cognitive performance for their age.
  • Item
    Thumbnail Image
    SPON1 Is Associated with Amyloid-β and APOE ε4-Related Cognitive Decline in Cognitively Normal Adults
    Fernandez, S ; Burnham, SC ; Milicic, L ; Savage, G ; Maruff, P ; Peretti, M ; Sohrabi, HR ; Lim, YY ; Weinborn, M ; Ames, D ; Masters, CL ; Martins, RN ; Rainey-Smith, S ; Rowe, CC ; Salvado, O ; Groth, D ; Verdile, G ; Villemagne, VL ; Porter, T ; Laws, SM (IOS PRESS, 2021)
    BACKGROUND: Genetic variation in Spondin-1, specifically rs11023139, has been associated with reduced rates of cognitive decline in individuals with Alzheimer's disease. OBJECTIVE: The aim of this study was to assess whether the association was present in cognitively normal older adults. METHODS: Longitudinal cognitive decline was investigated using linear mixed modelling in a cohort of 590 cognitively normal older adults enrolled in the Australian Imaging, Biomarkers and Lifestyle Study. RESULTS: No independent effect of Spondin-1 rs11023139 on cognitive decline was observed. However, significant associations were observed for the interaction between Apolipoprotein E (APOE) ɛ4 and rs11023139 in individuals with high amyloid-β burden. APOE ɛ4/rs11023139-A carriers declined significantly faster than APOE ɛ4/rs11023139-G_G carriers in measures of global cognition (p = 0.011) and verbal episodic memory (p = 0.020). CONCLUSION: These results suggest that carriage of the Spondin-1 rs11023139-A allele significantly contributes to a worsening of cognitive performance in APOE ɛ4 cognitively normal older adults with a high neocortical amyloid-β burden.
  • Item
    Thumbnail Image
    Association of β-Amyloid Level, Clinical Progression, and Longitudinal Cognitive Change in Normal Older Individuals
    Van der Kall, LM ; Thanh, T ; Burnham, SC ; Dore, V ; Mulligan, RS ; Bozinovski, S ; Lamb, F ; Bourgeat, P ; Fripp, J ; Schultz, S ; Lim, YY ; Laws, SM ; Ames, D ; Fowler, C ; Rainey-Smith, SR ; Martins, RN ; Salvado, O ; Robertson, J ; Maruff, P ; Masters, CL ; Villemagne, VL ; Rowe, CC (LIPPINCOTT WILLIAMS & WILKINS, 2021-02-02)
    OBJECTIVE: To determine the effect of β-amyloid (Aβ) level on progression risk to mild cognitive impairment (MCI) or dementia and longitudinal cognitive change in cognitively normal (CN) older individuals. METHODS: All CN from the Australian Imaging Biomarkers and Lifestyle study with Aβ PET and ≥3 years follow-up were included (n = 534; age 72 ± 6 years; 27% Aβ positive; follow-up 5.3 ± 1.7 years). Aβ level was divided using the standardized 0-100 Centiloid scale: <15 CL negative, 15-25 CL uncertain, 26-50 CL moderate, 51-100 CL high, >100 CL very high, noting >25 CL approximates a positive scan. Cox proportional hazards analysis and linear mixed effect models were used to assess risk of progression and cognitive decline. RESULTS: Aβ levels in 63% were negative, 10% uncertain, 10% moderate, 14% high, and 3% very high. Fifty-seven (11%) progressed to MCI or dementia. Compared to negative Aβ, the hazard ratio for progression for moderate Aβ was 3.2 (95% confidence interval [CI] 1.3-7.6; p < 0.05), for high was 7.0 (95% CI 3.7-13.3; p < 0.001), and for very high was 11.4 (95% CI 5.1-25.8; p < 0.001). Decline in cognitive composite score was minimal in the moderate group (-0.02 SD/year, p = 0.05), while the high and very high declined substantially (high -0.08 SD/year, p < 0.001; very high -0.35 SD/year, p < 0.001). CONCLUSION: The risk of MCI or dementia over 5 years in older CN is related to Aβ level on PET, 5% if negative vs 25% if positive but ranging from 12% if 26-50 CL to 28% if 51-100 CL and 50% if >100 CL. This information may be useful for dementia risk counseling and aid design of preclinical AD trials.