Anatomy and Neuroscience - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    Long-read RNA sequencing identifies polyadenylation elongation and differential transcript usage of host transcripts during SARS-CoV-2 in vitro infection
    Chang, JJ-Y ; Gleeson, J ; Rawlinson, D ; Pitt, M ; De Paoli-Iseppi, R ; Zhou, C ; Mordant, F ; Londrigan, S ; Clark, M ; Subbarao, K ; Stinear, T ; Coin, LJM ( 2021-12-15)
    Better methods to interrogate host-pathogen interactions during Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infections are imperative to help understand and prevent this disease. Here we implemented RNA-sequencing (RNA-seq) combined with the Oxford Nanopore Technologies (ONT) long-reads to measure differential host gene expression, transcript polyadenylation and isoform usage within various epithelial cell lines permissive and non-permissive for SARS-CoV-2 infection. SARS-CoV-2-infected and mock-infected Vero (African green monkey kidney epithelial cells), Calu-3 (human lung adenocarcinoma epithelial cells), Caco-2 (human colorectal adenocarcinoma epithelial cells) and A549 (human lung carcinoma epithelial cells) were analysed over time (0, 2, 24, 48 hours). Differential polyadenylation was found to occur in both infected Calu-3 and Vero cells during a late time point (48 hpi), with Gene Ontology (GO) terms such as viral transcription and translation shown to be significantly enriched in Calu-3 data. Poly(A) tails showed increased lengths in the majority of the differentially polyadenylated transcripts in Calu-3 and Vero cell lines (up to ~136 nt in mean poly(A) length, padj = 0.029). Of these genes, ribosomal protein genes such as RPS4X and RPS6 also showed downregulation in expression levels, suggesting the importance of ribosomal protein genes during infection. Furthermore, differential transcript usage was identified in Caco-2, Calu-3 and Vero cells, including transcripts of genes such as GSDMB and KPNA2 , which have previously been implicated in SARS-CoV-2 infections. Overall, these results highlight the potential role of differential polyadenylation and transcript usage in host immune response or viral manipulation of host mechanisms during infection, and therefore, showcase the value of long-read sequencing in identifying less-explored host responses to disease.
  • Item
    Thumbnail Image
    Nanopore direct RNA sequencing detects differential expression between human cell populations
    Gleeson, J ; Lane, T ; Harrison, P ; Haerty, W ; Clark, M ( 2020)
    Accurately quantifying gene and isoform expression changes is essential to understanding cell functions, differentiation and disease. Therefore, a crucial requirement of RNA sequencing is identifying differential expression. The recent development of long-read direct RNA (dRNA) sequencing has the potential to overcome many limitations of short and long-read sequencing methods that require RNA fragmentation, cDNA synthesis or PCR. dRNA sequences native RNA and can encompass an entire RNA in a single read. However, its ability to identify differential gene and isoform expression in complex organisms is poorly characterised. Using a mixture of synthetic controls and human SH-SY5Y cell differentiation into neuron-like cells, we show that dRNA sequencing accurately quantifies RNA expression and identifies differential expression of genes and isoforms. We generated ∼4 million dRNA reads with a median length of 991 nt. On average, reads covered 74% of SH-SY5Y transcripts and 29% were full-length. Measurement of expression and fold changes between synthetic control RNAs confirmed accurate quantification of genes and isoforms. Differential expression of 231 genes, 291 isoforms, plus 27 isoform switches were detected between undifferentiated and differentiated SH-SY5Y cells and samples clustered by differentiation state at the gene and isoform level. Genes upregulated in neuron-like cells were associated with neurogenesis. We further identified >30,000 expressed transcripts including thousands of novel splice isoforms and transcriptional units. Our results establish the ability of dRNA sequencing to identify biologically relevant differences in gene and isoform expression and perform the key capabilities of expression profiling methodologies.
  • Item
    No Preview Available
    Transcriptional and epi-transcriptional dynamics of SARS-CoV-2 during cellular infection.
    Chang, JJ-Y ; Rawlinson, D ; Pitt, M ; Taiaroa, G ; Gleeson, J ; Zhou, C ; Mordant, F ; Paoli-Iseppi, RD ; Caly, L ; Purcell, DFJ ; Stinear, T ; Londrigan, S ; Clark, M ; Williamson, D ; Subbarao, K ; Coin, LJM ( 2020-12-22)
    SARS-CoV-2 uses subgenomic (sg)RNA to produce viral proteins for replication and immune evasion. We applied long-read RNA and cDNA sequencing to in vitro human and primate infection models to study transcriptional dynamics. Transcription-regulating sequence (TRS)-dependent sgRNA was upregulated earlier in infection than TRS-independent sgRNA. An abundant class of TRS-independent sgRNA consisting of a portion of ORF1ab containing nsp1 joined to ORF10 and 3’UTR was upregulated at 48 hours post infection in human cell lines. We identified double-junction sgRNA containing both TRS-dependent and independent junctions. We found multiple sites at which the SARS-CoV-2 genome is consistently more modified than sgRNA, and that sgRNA modifications are stable across transcript clusters, host cells and time since infection. Our work highlights the dynamic nature of the SARS-CoV-2 transcriptome during its replication cycle. Our results are available via an interactive web-app at http://coinlab.mdhs.unimelb.edu.au/ .