Anatomy and Neuroscience - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 7 of 7
  • Item
    Thumbnail Image
    Investigation of Sequential Growth Factor Delivery during Cuprizone Challenge in Mice Aimed to Enhance Oligodendrogliogenesis and Myelin Repair
    Sabo, JK ; Aumann, TD ; Kilpatrick, TJ ; Cate, HS ; Nait-Oumesmar, B (PUBLIC LIBRARY SCIENCE, 2013-05-01)
    Repair in multiple sclerosis involves remyelination, a process in which axons are provided with a new myelin sheath by new oligodendrocytes. Bone morphogenic proteins (BMPs) are a family of growth factors that have been shown to influence the response of oligodendrocyte progenitor cells (OPCs) in vivo during demyelination and remyelination in the adult brain. We have previously shown that BMP4 infusion increases numbers of OPCs during cuprizone-induced demyelination, while infusion of Noggin, an endogenous antagonist of BMP4 increases numbers of mature oligodendrocytes and remyelinated axons following recovery. Additional studies have shown that insulin-like growth factor-1 (IGF-1) promotes the survival of OPCs during cuprizone-induced demyelination. Based on these data, we investigated whether myelin repair could be further enhanced by sequential infusion of these agents firstly, BMP4 to increase OPC numbers, followed by either Noggin or IGF-1 to increase the differentiation and survival of the newly generated OPCs. We identified that sequential delivery of BMP4 and IGF-1 during cuprizone challenge increased the number of mature oligodendrocytes and decreased astrocyte numbers following recovery compared with vehicle infused mice, but did not alter remyelination. However, sequential delivery of BMP4 and Noggin during cuprizone challenge did not alter numbers of oligodendrocytes or astrocytes in the corpus callosum compared with vehicle infused mice. Furthermore, electron microscopy analysis revealed no change in average myelin thickness in the corpus callosum between vehicle infused and BMP4-Noggin infused mice. Our results suggest that while single delivery of Noggin or IGF-1 increased the production of mature oligodendrocytes in vivo in the context of demyelination, only Noggin infusion promoted remyelination. Thus, sequential delivery of BMP4 and Noggin or IGF-1 does not further enhance myelin repair above what occurs with delivery of Noggin alone.
  • Item
    Thumbnail Image
    Signalling Pathways that Inhibit the Capacity of Precursor Cells for Myelin Repair
    Sabo, JK ; Cate, HS (MDPI AG, 2013-01)
    In demyelinating disorders such as Multiple Sclerosis (MS), targets of injury are myelin and oligodendrocytes, leading to severe neurological dysfunction. Regenerative therapies aimed at promoting oligodendrocyte maturation and remyelination are promising strategies for treatment in demyelinating disorders. Endogenous precursor cells or exogenous transplanted cells are potential sources for remyelinating oligodendrocytes in the central nervous system (CNS). Several signalling pathways have been implicated in regulating the capacity of these cell populations for myelin repair. Here, we review neural precursor cells and oligodendrocyte progenitor cells as potential sources for remyelinating oligodendrocytes and evidence for the functional role of key signalling pathways in inhibiting regeneration from these precursor cell populations.
  • Item
    Thumbnail Image
    Inhibiting Bone Morphogenetic Protein 4 Type I Receptor Signaling Promotes Remyelination by Potentiating Oligodendrocyte Differentiation.
    Govier-Cole, AE ; Wood, RJ ; Fletcher, JL ; Gonsalvez, DG ; Merlo, D ; Cate, HS ; Murray, SS ; Xiao, J (Society for Neuroscience, 2019)
    Blocking inhibitory factors within CNS demyelinating lesions is regarded as a promising strategy to promote remyelination. Bone morphogenetic protein 4 (BMP4) is an inhibitory factor present in demyelinating lesions. Noggin, an endogenous antagonist to BMP, has previously been shown to increase the number of oligodendrocytes and promote remyelination in vivo. However, it remains unclear how BMP4 signaling inhibits remyelination. Here we investigated the downstream signaling pathway that mediates the inhibitory effect that BMP4 exerts upon remyelination through pharmacological and transgenic approaches. Using the cuprizone mouse model of central demyelination, we demonstrate that selectively blocking BMP4 signaling via the pharmacological inhibitor LDN-193189 significantly promotes oligodendroglial differentiation and the extent of remyelination in vivo This was accompanied by the downregulation of transcriptional targets that suppress oligodendrocyte differentiation. Further, selective deletion of BMP receptor type IA (BMPRIA) within primary mouse oligodendrocyte progenitor cells (OPCs) significantly enhanced their differentiation and subsequent myelination in vitro Together, the results of this study identify that BMP4 signals via BMPRIA within OPCs to inhibit oligodendroglial differentiation and their capacity to myelinate axons, and suggest that blocking the BMP4/BMPRIA pathway in OPCs is a promising strategy to promote CNS remyelination.
  • Item
    Thumbnail Image
    Oligodendrocyte Birth and Death following Traumatic Brain Injury in Adult Mice
    Dent, KA ; Christie, KJ ; Bye, N ; Basrai, HS ; Turbic, A ; Habgood, M ; Cate, HS ; Turnley, AM ; de Castro, F (PUBLIC LIBRARY SCIENCE, 2015-03-23)
    Oligodendrocytes are responsible for producing and maintaining myelin throughout the CNS. One of the pathological features observed following traumatic brain injury (TBI) is the progressive demyelination and degeneration of axons within white matter tracts. While the effect of TBI on axonal health has been well documented, there is limited information regarding the response of oligodendrocytes within these areas. The aim of this study was to characterize the response of both mature oligodendrocytes and immature proliferative oligodendrocyte lineage cells across a 3 month timecourse following TBI. A computer-controlled cortical impact model was used to produce a focal lesion in the left motor cortex of adult mice. Immunohistochemical analyses were performed at 48 hours, 7 days, 2 weeks, 5 weeks and 3 months following injury to assess the prevalence of mature CC-1+ oligodendrocyte cell death, immature Olig2+ cell proliferation and longer term survival in the corpus callosum and external capsule. Decreased CC-1 immunoreactivity was observed in white matter adjacent to the site of injury from 2 days to 2 weeks post TBI, with ongoing mature oligodendrocyte apoptosis after this time. Conversely, proliferation of Olig2+ cells was observed as early as 48 hours post TBI and significant numbers of these cells and their progeny survived and remained in the external capsule within the injured hemisphere until at least 3 months post injury. These findings demonstrate that immature oligodendrocyte lineage cells respond to TBI by replacing oligodendrocytes lost due to damage and that this process occurs for months after injury.
  • Item
    Thumbnail Image
    3D Electrospun scaffolds promote a cytotrophic phenotype of cultured primary astrocytes
    Lau, CL ; Kovacevic, M ; Tingleff, TS ; Forsythe, JS ; Cate, HS ; Merlo, D ; Cederfur, C ; Maclean, FL ; Parish, CL ; Horne, MK ; Nisbet, DR ; Beart, PM (WILEY-BLACKWELL, 2014-07)
    Astrocytes are a target for regenerative neurobiology because in brain injury their phenotype arbitrates brain integrity, neuronal death and subsequent repair and reconstruction. We explored the ability of 3D scaffolds to direct astrocytes into phenotypes with the potential to support neuronal survival. Poly-ε-caprolactone scaffolds were electrospun with random and aligned fibre orientations on which murine astrocytes were sub-cultured and analysed at 4 and 12 DIV. Astrocytes survived, proliferated and migrated into scaffolds adopting 3D morphologies, mimicking in vivo stellated phenotypes. Cells on random poly-ε-caprolactone scaffolds grew as circular colonies extending processes deep within sub-micron fibres, whereas astrocytes on aligned scaffolds exhibited rectangular colonies with processes following not only the direction of fibre alignment but also penetrating the scaffold. Cell viability was maintained over 12 DIV, and cytochemistry for F-/G-actin showed fewer stress fibres on bioscaffolds relative to 2D astrocytes. Reduced cytoskeletal stress was confirmed by the decreased expression of glial fibrillary acidic protein. PCR demonstrated up-regulation of genes (excitatory amino acid transporter 2, brain-derived neurotrophic factor and anti-oxidant) reflecting healthy biologies of mature astrocytes in our extended culture protocol. This study illustrates the therapeutic potential of bioengineering strategies using 3D electrospun scaffolds which direct astrocytes into phenotypes supporting brain repair. Astrocytes exist in phenotypes with pro-survival and destructive components, and their biology can be modulated by changing phenotype. Our findings demonstrate murine astrocytes adopt a healthy phenotype when cultured in 3D. Astrocytes proliferate and extend into poly-ε-caprolactone scaffolds displaying 3D stellated morphologies with reduced GFAP expression and actin stress fibres, plus a cytotrophic gene profile. Bioengineered 3D scaffolds have potential to direct inflammation to aid regenerative neurobiology.
  • Item
    Thumbnail Image
    Gas6 deficiency increases oligodendrocyte loss and microglial activation in response to cuprizone-induced demyelination
    Binder, MD ; Cate, HS ; Prieto, AL ; Kemper, D ; Butzkueven, H ; Gresle, MM ; Cipriani, T ; Jokubaitis, VG ; Carmeliet, P ; Kilpatrick, TJ (SOC NEUROSCIENCE, 2008-05-14)
    The TAM family of receptor protein tyrosine kinases comprises three known members, namely Tyro3, Axl, and Mer. These receptors are widely expressed in the nervous system, including by oligodendrocytes, the cell type responsible for myelinating the CNS. We examined the potential role of the TAM family and of their principle cognate ligand, Gas6 (growth arrest gene 6), in modulating the phenotype of the cuprizone model of demyelination. We found that the expression profiles of Axl, Mer, and Gas6 mRNA were increased in the corpus callosum in a temporal profile correlating with the increased migration and proliferation of microglia/macrophages in this model. In contrast, expression of Tyro3 decreased, correlating with the loss of oligodendrocytes. Gas6 both promoted in vitro survival of oligodendrocytes (39.3 +/- 3.1 vs 11.8 +/- 2.4%) and modulated markers of activation in purified cultures of microglia (tumor necrosis factor alpha mRNA expression was reduced approximately 48%). In Gas6-/- mice subjected to cuprizone-challenge, demyelination was greater than in control mice, within the rostral region of the corpus callosum, as assessed by luxol fast blue staining (myelination reduced by 36%) and by ultrastructural analysis. An increased loss of Gst-pi (glutathione S-transferase-pi)-positive oligodendrocytes was also identified throughout the corpus callosum of Gas6-/- mice. Microglial marker expression (ionized calcium-binding adapter molecule 1) was increased in Gas6-/- mice but was restricted to the rostral corpus callosum. Therefore, TAM receptor activation and regulation can independently influence both oligodendrocyte survival and the microglial response after CNS damage.
  • Item
    Thumbnail Image
    Oligodendrocyte Positioning in Cerebral Cortex is Independent of Projection Neuron Layering
    Tan, S-S ; Kalloniatis, M ; Truong, H-T ; Binder, MD ; Cate, HS ; Kilpatrick, TJ ; Hammond, VE (WILEY-LISS, 2009-07)
    The factors affecting normal oligodendrocyte positioning in the cerebral cortex are unknown. Apart from the white matter, the highest numbers of oligodendrocytes in the rodent cortex are found in Layers V/VI, where the infragranular neurons normally reside. Few, if any, oligodendrocytes are normally found in the superficial cortical layers. To test whether or not this asymmetric positioning of oligodendrocytes is linked to the lamina positions of Layer V/VI projection neurons, mutant mice that cause neuronal layer inversion were examined. In three lines of mutant mice (Reeler, disabled-1, and p35) examined, representing two different genetic signaling pathways, the oligodendrocyte distribution was altered from an asymmetric to a symmetric distribution pattern. Unlike cortical neurons that are inverted in these mutant mice, the lack of oligodendrocyte inversion suggests a decoupling of the genetic mechanisms governing neuronal versus oligodendrocyte patterning. We conclude that oligodendrocyte positioning is not linked to the layer positions of V/VI projection neurons.