Anatomy and Neuroscience - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 9 of 9
  • Item
    Thumbnail Image
    Early Development of Electrical Excitability in the Mouse Enteric Nervous System
    Hao, MM ; Lomax, AE ; McKeown, SJ ; Reid, CA ; Young, HM ; Bornstein, JC (SOC NEUROSCIENCE, 2012-08-08)
    Neural activity is integral to the development of the enteric nervous system (ENS). A subpopulation of neural crest-derived cells expresses pan-neuronal markers at early stages of ENS development (at E10.5 in the mouse). However, the electrical activity of these cells has not been previously characterized, and it is not known whether all cells expressing neuronal markers are capable of firing action potentials (APs). In this study, we examined the activity of "neuron"-like cells (expressing pan-neuronal markers or with neuronal morphology) in the gut of E11.5 and E12.5 mice using whole-cell patch-clamp electrophysiology and compared them to the activity of neonatal and adult enteric neurons. Around 30-40% of neuron-like cells at E11.5 and E12.5 fired APs, some of which were very similar to those of adult enteric neurons. All APs were sensitive to tetrodotoxin (TTX), indicating that they were driven by voltage-gated Na+ currents. Expression of mRNA encoding several voltage-gated Na+ channels by the E11.5 gut was detected using RT-PCR. The density of voltage-gated Na+ currents increased from E11.5 to neonates. Immature active responses, mediated in part by TTX- and lidocaine-insensitive channels, were observed in most cells at E11.5 and E12.5, but not in P0/P1 or adult neurons. However, some cells expressing neuronal markers at E11.5 or E12.5 did not exhibit an active response to depolarization. Spontaneous depolarizations resembling excitatory postsynaptic potentials were observed at E12.5. The ENS is one of the earliest parts of the developing nervous system to exhibit mature forms of electrical activity.
  • Item
    Thumbnail Image
    A Novel Method for Identifying the Transition Zone in Long-Segment Hirschsprung Disease: Investigating the Muscle Unit to Ganglion Ratio
    Yang, W ; Pham, J ; King, SK ; Newgreen, DF ; Young, HM ; Stamp, LA ; Hao, MM (MDPI, 2022-08)
    Hirschsprung disease (HSCR) is characterised by the absence of enteric ganglia along variable lengths of the distal bowel. Current gold standard treatment involves the surgical resection of the defective, aganglionic bowel. Clear and reliable distinction of the normoganglionated bowel from the transition zone is key for successful resection of the entire defective bowel, and the avoidance of subsequent postoperative complications. However, the intraoperative nature of the tissue analysis and the variability of patient samples, sample preparation, and operator objectivity, make reproducible identification of the transition zone difficult. Here, we have described a novel method for using muscle units as a distinctive landmark for quantifying the density of enteric ganglia in resection specimens from HSCR patients. We show that the muscle unit to ganglion ratio is greater in the transition zone when compared with the proximal, normoganglionated region for long-segment HSCR patients. Patients with short-segment HSCR were also investigated, however, the muscle unit to ganglion ratio was not significantly different in these patients. Immunohistochemical examination of individual ganglia showed that there were no differences in the proportions of either enteric neurons or glial cells through the different regions of the resected colon. In addition, we identified that the size of enteric ganglia was smaller for patients that went on to develop HSCR associated enterocolitis; although the density of ganglia, as determined by the muscle unit to ganglia ratio, was not different when compared with patients that had no further complications. This suggests that subtle changes in the enteric nervous system, even in the "normoganglionated" colon, could be involved in changes in immune function and subsequent bacterial dysbiosis.
  • Item
    No Preview Available
    Development of enteric neuron diversity
    Hao, MM ; Young, HM (WILEY, 2009-07)
    The mature enteric nervous system (ENS) is composed of many different neuron subtypes and enteric glia, which all arise from the neural crest. How this diversity is generated from neural crest-derived cells is a central question in neurogastroenterology, as defects in these processes are likely to underlie some paediatric motility disorders. Here we review the developmental appearance (the earliest age at which expression of specific markers can be localized) and birthdates (the age at which precursors exit the cell cycle) of different enteric neuron subtypes, and their projections to some targets. We then focus on what is known about the mechanisms underlying the generation of enteric neuron diversity and axon pathfinding. Finally, we review the development of the ENS in humans and the etiologies of a number of paediatric motility disorders.
  • Item
    Thumbnail Image
    Kif1bp loss in mice leads to defects in the peripheral and central nervous system and perinatal death (vol 6, 2017)
    Hirst, CS ; Stamp, LA ; Bergner, AJ ; Hao, MM ; Tran, MX ; Morgan, JM ; Dutschmann, M ; Allen, AM ; Paxinos, G ; Furlong, TM ; McKeown, SJ ; Young, HM (NATURE PORTFOLIO, 2018-06-08)
    A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.
  • Item
    Thumbnail Image
    Kif1bp loss in mice leads to defects in the peripheral and central nervous system and perinatal death
    Hirst, CS ; Stamp, LA ; Bergner, AJ ; Hao, MM ; Tran, MX ; Morgan, JM ; Dutschmann, M ; Allen, AM ; Paxinos, G ; Furlong, TM ; McKeown, SJ ; Young, HM (NATURE PORTFOLIO, 2017-11-30)
    Goldberg-Shprintzen syndrome is a poorly understood condition characterized by learning difficulties, facial dysmorphism, microcephaly, and Hirschsprung disease. GOSHS is due to recessive mutations in KIAA1279, which encodes kinesin family member 1 binding protein (KIF1BP, also known as KBP). We examined the effects of inactivation of Kif1bp in mice. Mice lacking Kif1bp died shortly after birth, and exhibited smaller brains, olfactory bulbs and anterior commissures, and defects in the vagal and sympathetic innervation of the gut. Kif1bp was found to interact with Ret to regulate the development of the vagal innervation of the stomach. Although newborn Kif1bp -/- mice had neurons along the entire bowel, the colonization of the gut by neural crest-derived cells was delayed. The data show an essential in vivo role for KIF1BP in axon extension from some neurons, and the reduced size of the olfactory bulb also suggests additional roles for KIF1BP. Our mouse model provides a valuable resource to understand GOSHS.
  • Item
    No Preview Available
    Changes in Nicotinic Neurotransmission during Enteric Nervous System Development
    Foong, JPP ; Hirst, CS ; Hao, MM ; McKeown, SJ ; Boesmans, W ; Young, HM ; Bornstein, JC ; Vanden Berghe, P (SOC NEUROSCIENCE, 2015-05-06)
    Acetylcholine-activating pentameric nicotinic receptors (nAChRs) are an essential mode of neurotransmission in the enteric nervous system (ENS). In this study, we examined the functional development of specific nAChR subtypes in myenteric neurons using Wnt1-Cre;R26R-GCaMP3 mice, where all enteric neurons and glia express the genetically encoded calcium indicator, GCaMP3. Transcripts encoding α3, α4, α7, β2, and β4 nAChR subunits were already expressed at low levels in the E11.5 gut and by E14.5 and, thereafter, α3 and β4 transcripts were the most abundant. The effect of specific nAChR subtype antagonists on evoked calcium activity in enteric neurons was investigated at different ages. Blockade of the α3β4 receptors reduced electrically and chemically evoked calcium responses at E12.5, E14.5, and P0. In addition to the α3β4 antagonist, antagonists to α3β2 and α4β2 also significantly reduced responses by P10-11 and in adult preparations. Therefore, there is an increase in the diversity of functional nAChRs during postnatal development. However, an α7 nAChR antagonist had no effect at any age. Furthermore, at E12.5 we found evidence for unconventional receptors that were responsive to the nAChR agonists 1-dimethyl-4-phenylpiperazinium and nicotine, but were insensitive to the general nicotinic blocker, hexamethonium. Migration, differentiation, and neuritogenesis assays did not reveal a role for nAChRs in these processes during embryonic development. In conclusion, there are significant changes in the contribution of different nAChR subunits to synaptic transmission during ENS development, even after birth. This is the first study to investigate the development of cholinergic transmission in the ENS.
  • Item
    Thumbnail Image
    The emergence of neural activity and its role in the development of the enteric nervous system
    Hao, MM ; Bornstein, JC ; Vanden Berghe, P ; Lomax, AE ; Young, HM ; Foong, JPP (ACADEMIC PRESS INC ELSEVIER SCIENCE, 2013-10-01)
    The enteric nervous system (ENS) is a vital part of the autonomic nervous system that regulates many gastrointestinal functions, including motility and secretion. All neurons and glia of the ENS arise from neural crest-derived cells that migrate into the gastrointestinal tract during embryonic development. It has been known for many years that a subpopulation of the enteric neural crest-derived cells expresses pan-neuronal markers at early stages of ENS development. Recent studies have demonstrated that some enteric neurons exhibit electrical activity from as early as E11.5 in the mouse, with further maturation of activity during embryonic and postnatal development. This article discusses the maturation of electrophysiological and morphological properties of enteric neurons, the formation of synapses and synaptic activity, and the influence of neural activity on ENS development.
  • Item
    Thumbnail Image
    Development of myenteric cholinergic neurons in ChAT-Cre;R26R-YFP Mice
    Hao, MM ; Bornstein, JC ; Young, HM (WILEY, 2013-10-01)
    Cholinergic neurons are the major excitatory neurons of the enteric nervous system (ENS), and include intrinsic sensory neurons, interneurons, and excitatory motor neurons. Cholinergic neurons have been detected in the embryonic ENS; however, the development of these neurons has been difficult to study as they are difficult to detect prior to birth using conventional immunohistochemistry. In this study we used ChAT-Cre;R26R-YFP mice to examine the development of cholinergic neurons in the gut of embryonic and postnatal mice. Cholinergic (YFP+) neurons were first detected at embryonic day (E)11.5, and the proportion of cholinergic neurons gradually increased during pre- and postnatal development. At birth, myenteric cholinergic neurons comprised less than half of their adult proportions in the small intestine (25% of myenteric neurons were YFP+ at P0 compared to 62% in adults). The earliest cholinergic neurons appear to mainly project anally. Projections into the presumptive circular muscle were first observed at E14.5. A subpopulation of cholinergic neurons coexpress calbindin through embryonic and postnatal development, but only a small proportion coexpressed neuronal nitric oxide synthase. Our study shows that cholinergic neurons in the ENS develop over a protracted period of time.
  • Item
    Thumbnail Image
    Colonizing while migrating: how do individual enteric neural crest cells behave?
    Young, HM ; Bergner, AJ ; Simpson, MJ ; McKeown, SJ ; Hao, MM ; Anderson, CR ; Enomoto, H (BMC, 2014-03-26)
    BACKGROUND: Directed cell migration is essential for normal development. In most of the migratory cell populations that have been analyzed in detail to date, all of the cells migrate as a collective from one location to another. However, there are also migratory cell populations that must populate the areas through which they migrate, and thus some cells get left behind while others advance. Very little is known about how individual cells behave to achieve concomitant directional migration and population of the migratory route. We examined the behavior of enteric neural crest-derived cells (ENCCs), which must both advance caudally to reach the anal end and populate each gut region. RESULTS: The behavior of individual ENCCs was examined using live imaging and mice in which ENCCs express a photoconvertible protein. We show that individual ENCCs exhibit very variable directionalities and speed; as the migratory wavefront of ENCCs advances caudally, each gut region is populated primarily by some ENCCs migrating non-directionally. After populating each region, ENCCs remain migratory for at least 24 hours. Endothelin receptor type B (EDNRB) signaling is known to be essential for the normal advance of the ENCC population. We now show that perturbation of EDNRB principally affects individual ENCC speed rather than directionality. The trajectories of solitary ENCCs, which occur transiently at the wavefront, were consistent with an unbiased random walk and so cell-cell contact is essential for directional migration. ENCCs migrate in close association with neurites. We showed that although ENCCs often use neurites as substrates, ENCCs lead the way, neurites are not required for chain formation and neurite growth is more directional than the migration of ENCCs as a whole. CONCLUSIONS: Each gut region is initially populated by sub-populations of ENCCs migrating non-directionally, rather than stopping. This might provide a mechanism for ensuring a uniform density of ENCCs along the growing gut.