Medicine (St Vincent's) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 49
  • Item
    Thumbnail Image
    Imaging for assessment of cancer treatment response to immune checkpoint inhibitors can be complementary in identifying hypophysitis
    Galligan, A ; Iravani, A ; Lasocki, A ; Wallace, R ; Weppler, AM ; Sachithanandan, N ; Chiang, C ; Colman, PG ; Wentworth, J ; Spain, L ; Au-Yeung, G ; Lee, B ; Kay, TWH ; Hicks, RJ ; Sandhu, S ; Krishnamurthy, B (FRONTIERS MEDIA SA, 2023-11-29)
    INTRODUCTION: Hypophysitis is reported in 8.5%-14% of patients receiving combination immune checkpoint inhibition (cICI) but can be a diagnostic challenge. This study aimed to assess the role of routine diagnostic imaging performed during therapeutic monitoring of combination anti-CTLA-4/anti-PD-1 treatment in the identification of hypophysitis and the relationship of imaging findings to clinical diagnostic criteria. METHODS: This retrospective cohort study identified patients treated with cICI between January 2016 and January 2019 at a quaternary melanoma service. Medical records were reviewed to identify patients with a documented diagnosis of hypophysitis based on clinical criteria. Available structural brain imaging with magnetic resonance imaging (MRI) or computed tomography (CT) of the brain and 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography with computed tomography (FDG-PET/CT) were assessed retrospectively. The main radiological outcome measures were a relative change in pituitary size or FDG uptake temporally attributed to cICI. RESULTS: There were 162 patients (median age 60 years, 30% female) included. A total of 100 and 134 had serial CT/MRI of the brain and FDG-PET/CT, respectively. There were 31 patients who had a documented diagnosis of hypophysitis and an additional 20 who had isolated pituitary imaging findings. The pituitary gland enlargement was mild, and the largest absolute gland size was 13 mm, with a relative increase of 7 mm from baseline. There were no cases of optic chiasm compression. Pituitary enlargement and increased FDG uptake were universally transient. High-dose glucocorticoid treatment for concurrent irAEs prevented assessment of the pituitary-adrenal axis in 90% of patients with isolated imaging findings. CONCLUSION: Careful review of changes in pituitary characteristics on imaging performed for assessment of therapeutic response to iICI may lead to increased identification and more prompt management of cICI-induced hypophysitis.
  • Item
    Thumbnail Image
    Increased Thyroidal Activity on Routine FDG-PET/CT after Combination Immune Checkpoint Inhibition: Temporal Associations with Clinical and Biochemical Thyroiditis
    Galligan, A ; Wallace, R ; Krishnamurthy, B ; Kay, TWH ; Sachithanandan, N ; Chiang, C ; Sandhu, S ; Hicks, RJ ; Iravani, A (MDPI, 2023-12)
    BACKGROUND: FDG-PET/CT used for immune checkpoint inhibitor (ICI) response assessment can incidentally identify immune-related adverse events (irAEs), including thyroiditis. This study aimed to correlate the time course of FDG-PET/CT evidence of thyroiditis with clinical and biochemical evolution of thyroid dysfunction. METHODS: A retrospective review was performed by two independent blinded nuclear medicine physicians (NMPs) of thyroidal FDG uptake in 127 patients who underwent PET/CT between January 2016 and January 2019 at baseline and during treatment monitoring of combination ICI therapy for advanced melanoma. Interobserver agreement was assessed and FDG-PET/CT performance defined by a receiver-operating characteristic (ROC) curve using thyroid function tests (TFTs) as the standard of truth. Thyroid maximum standardized uptake value (SUVmax) and its temporal changes with respect to the longitudinal biochemistry were serially recorded. RESULTS: At a median of 3 weeks after commencing ICI, 43/127 (34%) had a diagnosis of thyroiditis established by abnormal TFTs. FDG-PET/CT was performed at baseline and at a median of 11 weeks (range 3-32) following the start of therapy. ROC analysis showed an area under the curve of 0.87 (95% CI 0.80, 0.94) for FDG-PET/CT for detection of thyroiditis with a positive predictive value of 93%. Among patients with biochemical evidence of thyroiditis, those with a positive FDG-PET/CT were more likely to develop overt hypothyroidism (77% versus 35%, p < 0.01). In the evaluation of the index test, there was an almost perfect interobserver agreement between NMPs of 93.7% (95% CI 89.4-98.0), kappa 0.83. CONCLUSION: Increased metabolic activity of the thyroid on routine FDG-PET/CT performed for tumoral response of patients undergoing ICI therapy is generally detected well after routine biochemical diagnosis. Elevation of FDG uptake in the thyroid is predictive of overt clinical hypothyroidism and suggests that an ongoing robust inflammatory response beyond the initial thyrotoxic phase may be indicative of thyroid destruction.
  • Item
    Thumbnail Image
    EZH2 inhibitors promote β-like cell regeneration in young and adult type 1 diabetes donors
    Al-Hasani, K ; Marikar, SN ; Kaipananickal, H ; Maxwell, S ; Okabe, J ; Khurana, I ; Karagiannis, T ; Liang, JJ ; Mariana, L ; Loudovaris, T ; Kay, T ; El-Osta, A (Nature Publishing Group, 2024-01-01)
    β-cells are a type of endocrine cell found in pancreatic islets that synthesize, store and release insulin. In type 1 diabetes (T1D), T-cells of the immune system selectively destroy the insulin-producing β-cells. Destruction of these cells leads to a lifelong dependence on exogenous insulin administration for survival. Consequently, there is an urgent need to identify novel therapies that stimulate β-cell growth and induce β-cell function. We and others have shown that pancreatic ductal progenitor cells are a promising source for regenerating β-cells for T1D owing to their inherent differentiation capacity. Default transcriptional suppression is refractory to exocrine reaction and tightly controls the regenerative potential by the EZH2 methyltransferase. In the present study, we show that transient stimulation of exocrine cells, derived from juvenile and adult T1D donors to the FDA-approved EZH2 inhibitors GSK126 and Tazemetostat (Taz) influence a phenotypic shift towards a β-like cell identity. The transition from repressed to permissive chromatin states are dependent on bivalent H3K27me3 and H3K4me3 chromatin modification. Targeting EZH2 is fundamental to β-cell regenerative potential. Reprogrammed pancreatic ductal cells exhibit insulin production and secretion in response to a physiological glucose challenge ex vivo. These pre-clinical studies underscore the potential of small molecule inhibitors as novel modulators of ductal progenitor differentiation and a promising new approach for the restoration of β-like cell function.
  • Item
    Thumbnail Image
    Insulin antibodies are prevalent in adults with type 1 diabetes referred for islet cell transplantation and are modified by islet transplantation and immunosuppression: an Australian experience
    Hensman, CJ ; Gooley, JL ; Januszewski, AS ; Lee, MH ; Maclsaac, RJ ; Boston, RC ; Ward, GM ; Jenkins, AJ (WILEY, 2022-08)
    We have analysed insulin antibodies in 149 adults with type 1 diabetes and 2859 people without diabetes. We have determined that insulin antibody levels are higher in adults with, versus without, diabetes and that the levels are falling, and more patients are becoming antibody-negative post islet cell transplantation.
  • Item
    Thumbnail Image
    A Worldwide Survey of Activities and Practices in Clinical Islet of Langerhans Transplantation
    Berney, T ; Andres, A ; Bellin, MD ; de Koning, EJP ; Johnson, PRV ; Kay, TWH ; Lundgren, T ; Rickels, MR ; Scholz, H ; Stock, PG ; White, S (FRONTIERS MEDIA SA, 2022-08-11)
    A global online survey was administered to 69 islet transplantation programs, covering 84 centers and 5 networks. The survey addressed questions on program organization and activity in the 2000-2020 period, including impact on activity of national health care coverage policies. We obtained full data from 55 institutions or networks worldwide and basic activity data from 6 centers. Additional data were obtained from alternative sources. A total of 94 institutions and 5 networks was identified as having performed islet allotransplantation. 4,365 islet allotransplants (2,608 in Europe, 1,475 in North America, 135 in Asia, 119 in Oceania, 28 in South America) were reported in 2,170 patients in the survey period. From 15 centers active at the start of the study period, the number of simultaneously active islet centers peaked at 54, to progressively decrease to 26 having performed islet allotransplants in 2020. Notably, only 16 centers/networks have done >100 islet allotransplants in the survey period. Types of transplants performed differed notably between North America and the rest of the world, in particular with respect to the near-absence of simultaneous islet-kidney transplantation. Absence of heath care coverage has significantly hampered transplant activity in the past years and the COVID-19 pandemic in 2020.
  • Item
    Thumbnail Image
    Desmoglein-2 is important for islet function and β-cell survival
    Min, KKM ; Rojas-Canales, D ; Penko, D ; DeNichilo, M ; Cockshell, MP ; Ffrench, CB ; Thompson, EJ ; Asplund, O ; Drogemuller, CJ ; Prasad, RB ; Groop, L ; Grey, ST ; Thomas, HE ; Loudovaris, T ; Kay, TW ; Mahoney, MG ; Jessup, CF ; Coates, PT ; Bonder, CS (SPRINGERNATURE, 2022-10-29)
    Type 1 diabetes is a complex disease characterized by the lack of endogenous insulin secreted from the pancreatic β-cells. Although β-cell targeted autoimmune processes and β-cell dysfunction are known to occur in type 1 diabetes, a complete understanding of the cell-to-cell interactions that support pancreatic function is still lacking. To characterize the pancreatic endocrine compartment, we studied pancreata from healthy adult donors and investigated a single cell surface adhesion molecule, desmoglein-2 (DSG2). Genetically-modified mice lacking Dsg2 were examined for islet cell mass, insulin production, responses to glucose, susceptibility to a streptozotocin-induced mouse model of hyperglycaemia, and ability to cure diabetes in a syngeneic transplantation model. Herein, we have identified DSG2 as a previously unrecognized adhesion molecule that supports β-cells. Furthermore, we reveal that DSG2 is within the top 10 percent of all genes expressed by human pancreatic islets and is expressed by the insulin-producing β-cells but not the somatostatin-producing δ-cells. In a Dsg2 loss-of-function mice (Dsg2lo/lo), we observed a significant reduction in the number of pancreatic islets and islet size, and consequently, there was less total insulin content per islet cluster. Dsg2lo/lo mice also exhibited a reduction in blood vessel barrier integrity, an increased incidence of streptozotocin-induced diabetes, and islets isolated from Dsg2lo/lo mice were more susceptible to cytokine-induced β-cell apoptosis. Following transplantation into diabetic mice, islets isolated from Dsg2lo/lo mice were less effective than their wildtype counterparts at curing diabetes. In vitro assays using the Beta-TC-6 murine β-cell line suggest that DSG2 supports the actin cytoskeleton as well as the release of cytokines and chemokines. Taken together, our study suggests that DSG2 is an under-appreciated regulator of β-cell function in pancreatic islets and that a better understanding of this adhesion molecule may provide new opportunities to combat type 1 diabetes.
  • Item
    Thumbnail Image
    Diabetes induced by checkpoint inhibition in nonobese diabetic mice can be prevented or reversed by a JAK1/JAK2 inhibitor
    Ge, T ; Phung, A-L ; Jhala, G ; Trivedi, P ; Principe, N ; De George, DJ ; Pappas, EG ; Litwak, S ; Sanz-Villanueva, L ; Catterall, T ; Fynch, S ; Boon, L ; Kay, TW ; Chee, J ; Krishnamurthy, B ; Thomas, HE (WILEY, 2022)
    OBJECTIVES: Immune checkpoint inhibitors have achieved clinical success in cancer treatment, but this treatment causes immune-related adverse events, including type 1 diabetes (T1D). Our aim was to test whether a JAK1/JAK2 inhibitor, effective at treating spontaneous autoimmune diabetes in nonobese diabetic (NOD) mice, can prevent diabetes secondary to PD-L1 blockade. METHODS: Anti-PD-L1 antibody was injected into NOD mice to induce diabetes, and JAK1/JAK2 inhibitor LN3103801 was administered by oral gavage to prevent diabetes. Flow cytometry was used to study T cells and beta cells. Mesothelioma cells were inoculated into BALB/c mice to induce a transplantable tumour model. RESULTS: Anti-PD-L1-induced diabetes was associated with increased immune cell infiltration in the islets and upregulated MHC class I on islet cells. Anti-PD-L1 administration significantly increased islet T cell proliferation and islet-specific CD8+ T cell numbers in peripheral lymphoid organs. JAK1/JAK2 inhibitor treatment blocked IFNγ-mediated MHC class I upregulation on beta cells and T cell proliferation mediated by cytokines that use the common γ chain receptor. As a result, anti-PD-L1-induced diabetes was prevented by JAK1/JAK2 inhibitor administered before or after checkpoint inhibitor therapy. Diabetes was also reversed when the JAK1/JAK2 inhibitor was administered after the onset of anti-PD-L1-induced hyperglycaemia. Furthermore, JAK1/JAK2 inhibitor intervention after checkpoint inhibitors did not reverse or abrogate the antitumour effects in a transplantable tumour model. CONCLUSION: A JAK1/JAK2 inhibitor can prevent and reverse anti-PD-L1-induced diabetes by blocking IFNγ and γc cytokine activities. Our study provides preclinical validation of JAK1/JAK2 inhibitor use in checkpoint inhibitor-induced diabetes.
  • Item
    Thumbnail Image
    Australian experience with total pancreatectomy with islet autotransplantation to treat chronic pancreatitis
    Bampton, TJ ; Holmes-Walker, DJ ; Drogemuller, CJ ; Radford, T ; Anderson, P ; Etherton, C ; Russell, CH ; Khurana, S ; Torpy, DJ ; Couper, JJ ; Couper, RLT ; Macintyre, P ; Neo, EL ; Benitez-Aguirre, P ; Thomas, G ; Loudovaris, T ; Thomas, HE ; Palmer, LJ ; Wu, D ; Rogers, NM ; Williams, L ; Hawthorne, WJ ; O'Connell, PJ ; Kay, TW ; Pleass, H ; Chen, JW ; Coates, PT (WILEY, 2021-12)
    BACKGROUND: This study aimed to describe the clinical outcomes of total pancreatectomy with islet autotransplantation (TP-IAT) in Australia. METHODS: Individuals selected for TP-IAT surgery according to the Minnesota Criteria (Appendix) without evidence of diabetes were evaluated including time to transplantation from pancreatectomy, islet numbers infused and post-transplantation HbA1c, C-peptide, total daily insulin and analgesic requirement. RESULTS: Sixteen individuals underwent TP-IAT from Australia and New Zealand between 2010 and 2020. Two recipients are deceased. The median islet equivalents/kg infused was 4244 (interquartile range (IQR) 2290-7300). The median C-peptide 1 month post-TP-IAT was 384 (IQR 210-579) pmol/L and at median 29.5 (IQR 14.5-46.5) months from transplant was 395 (IQR 139-862) pmol/L. Insulin independence was achieved in eight of 15 (53.3%) surviving recipients. A higher islet equivalents transplanted was most strongly associated with the likelihood of insulin independence (P < 0.05). Of the 15 surviving recipients, 14 demonstrated substantial reduction in analgesic requirement. CONCLUSION: The TP-IAT programme in Australia has been a successful new therapy for the management of individuals with chronic pancreatitis including hereditary forms refractory to medical treatment to improve pain management with 50% insulin independence rates.
  • Item
    Thumbnail Image
    Interferons limit autoantigen-specific CD8+ T-cell expansion in the non-obese diabetic mouse
    Jhala, G ; Krishnamurthy, B ; Brodnicki, TC ; Ge, T ; Akazawa, S ; Selck, C ; Trivedi, PM ; Pappas, EG ; Mackin, L ; Principe, N ; Bremaud, E ; De George, DJ ; Boon, L ; Smyth, I ; Chee, J ; Kay, TWH ; Thomas, HE (CELL PRESS, 2022-04-26)
    Interferon gamma (IFNγ) is a proinflammatory cytokine implicated in autoimmune diseases. However, deficiency or neutralization of IFNγ is ineffective in reducing disease. We characterize islet antigen-specific T cells in non-obese diabetic (NOD) mice lacking all three IFN receptor genes. Diabetes is minimally affected, but at 125 days of age, antigen-specific CD8+ T cells, quantified using major histocompatibility complex class I tetramers, are present in 10-fold greater numbers in Ifngr-mutant NOD mice. T cells from Ifngr-mutant mice have increased proliferative responses to interleukin-2 (IL-2). They also have reduced phosphorylated STAT1 and its target gene, suppressor of cytokine signaling 1 (SOCS-1). IFNγ controls the expansion of antigen-specific CD8+ T cells by mechanisms which include increased SOCS-1 expression that regulates IL-2 signaling. The expanded CD8+ T cells are likely to contribute to normal diabetes progression despite reduced inflammation in Ifngr-mutant mice.
  • Item
    Thumbnail Image
    Investigating the efficacy of baricitinib in new onset type 1 diabetes mellitus (BANDIT)-study protocol for a phase 2, randomized, placebo controlled trial
    Waibel, M ; Thomas, HE ; Wentworth, JM ; Couper, JJ ; MacIsaac, RJ ; Cameron, FJ ; So, M ; Krishnamurthy, B ; Doyle, MC ; Kay, TW (BMC, 2022-05-23)
    BACKGROUND: Type 1 diabetes (T1D) places an extraordinary burden on individuals and their families, as well as on the healthcare system. Despite recent advances in glucose sensors and insulin pump technology, only a minority of patients meet their glucose targets and face the risk of both acute and long-term complications, some of which are life-threatening. The JAK-STAT pathway is critical for the immune-mediated pancreatic beta cell destruction in T1D. Our pre-clinical data show that inhibitors of JAK1/JAK2 prevent diabetes and reverse newly diagnosed diabetes in the T1D non-obese diabetic mouse model. The goal of this study is to determine if the JAK1/JAK2 inhibitor baricitinib impairs type 1 diabetes autoimmunity and preserves beta cell function. METHODS: This will be as a multicentre, two-arm, double-blind, placebo-controlled randomized trial in individuals aged 10-30 years with recent-onset T1D. Eighty-three participants will be randomized in a 2:1 ratio within 100 days of diagnosis to receive either baricitinib 4mg/day or placebo for 48 weeks and then monitored for a further 48 weeks after stopping study drug. The primary outcome is the plasma C-peptide 2h area under the curve following ingestion of a mixed meal. Secondary outcomes include HbA1c, insulin dose, continuous glucose profile and adverse events. Mechanistic assessments will characterize general and diabetes-specific immune responses. DISCUSSION: This study will determine if baricitinib slows the progressive, immune-mediated loss of beta cell function that occurs after clinical presentation of T1D. Preservation of beta cell function would be expected to improve glucose control and prevent diabetes complications, and justify additional trials of baricitinib combined with other therapies and of its use in at-risk populations to prevent T1D. TRIAL REGISTRATION: ANZCTR ACTRN12620000239965 . Registered on 26 February 2020. CLINICALTRIALS: gov NCT04774224. Registered on 01 March 2021.