Medicine (St Vincent's) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 57
  • Item
    No Preview Available
    Seizure occurrence is linked to multiday cycles in diverse physiological signals
    Gregg, NM ; Attia, TP ; Nasseri, M ; Joseph, B ; Karoly, P ; Cui, J ; Stirling, RE ; Viana, PF ; Richner, TJ ; Nurse, ES ; Schulze-Bonhage, A ; Cook, MJ ; Worrell, GA ; Richardson, MP ; Freestone, DR ; Brinkmann, BH (WILEY, 2023-06)
    OBJECTIVE: The factors that influence seizure timing are poorly understood, and seizure unpredictability remains a major cause of disability. Work in chronobiology has shown that cyclical physiological phenomena are ubiquitous, with daily and multiday cycles evident in immune, endocrine, metabolic, neurological, and cardiovascular function. Additionally, work with chronic brain recordings has identified that seizure risk is linked to daily and multiday cycles in brain activity. Here, we provide the first characterization of the relationships between the cyclical modulation of a diverse set of physiological signals, brain activity, and seizure timing. METHODS: In this cohort study, 14 subjects underwent chronic ambulatory monitoring with a multimodal wrist-worn sensor (recording heart rate, accelerometry, electrodermal activity, and temperature) and an implanted responsive neurostimulation system (recording interictal epileptiform abnormalities and electrographic seizures). Wavelet and filter-Hilbert spectral analyses characterized circadian and multiday cycles in brain and wearable recordings. Circular statistics assessed electrographic seizure timing and cycles in physiology. RESULTS: Ten subjects met inclusion criteria. The mean recording duration was 232 days. Seven subjects had reliable electroencephalographic seizure detections (mean = 76 seizures). Multiday cycles were present in all wearable device signals across all subjects. Seizure timing was phase locked to multiday cycles in five (temperature), four (heart rate, phasic electrodermal activity), and three (accelerometry, heart rate variability, tonic electrodermal activity) subjects. Notably, after regression of behavioral covariates from heart rate, six of seven subjects had seizure phase locking to the residual heart rate signal. SIGNIFICANCE: Seizure timing is associated with daily and multiday cycles in multiple physiological processes. Chronic multimodal wearable device recordings can situate rare paroxysmal events, like seizures, within a broader chronobiology context of the individual. Wearable devices may advance the understanding of factors that influence seizure risk and enable personalized time-varying approaches to epilepsy care.
  • Item
    No Preview Available
    Continuous synthesis of artificial speech sounds from human cortical surface recordings during silent speech production
    Meng, K ; Goodarzy, F ; Kim, E ; Park, YJ ; Kim, JS ; Cook, MJ ; Chung, CK ; Grayden, DB (IOP Publishing Ltd, 2023-08-01)
    Objective. Brain-computer interfaces can restore various forms of communication in paralyzed patients who have lost their ability to articulate intelligible speech. This study aimed to demonstrate the feasibility of closed-loop synthesis of artificial speech sounds from human cortical surface recordings during silent speech production.Approach. Ten participants with intractable epilepsy were temporarily implanted with intracranial electrode arrays over cortical surfaces. A decoding model that predicted audible outputs directly from patient-specific neural feature inputs was trained during overt word reading and immediately tested with overt, mimed and imagined word reading. Predicted outputs were later assessed objectively against corresponding voice recordings and subjectively through human perceptual judgments.Main results. Artificial speech sounds were successfully synthesized during overt and mimed utterances by two participants with some coverage of the precentral gyrus. About a third of these sounds were correctly identified by naïve listeners in two-alternative forced-choice tasks. A similar outcome could not be achieved during imagined utterances by any of the participants. However, neural feature contribution analyses suggested the presence of exploitable activation patterns during imagined speech in the postcentral gyrus and the superior temporal gyrus. In future work, a more comprehensive coverage of cortical surfaces, including posterior parts of the middle frontal gyrus and the inferior frontal gyrus, could improve synthesis performance during imagined speech.Significance.As the field of speech neuroprostheses is rapidly moving toward clinical trials, this study addressed important considerations about task instructions and brain coverage when conducting research on silent speech with non-target participants.
  • Item
    Thumbnail Image
    Deep learning for automated detection of generalized paroxysmal fast activity in Lennox-Gastaut syndrome
    Nurse, ES ; Dalic, LJ ; Clarke, S ; Cook, M ; Archer, J (Elsevier, 2023-10)
    OBJECTIVES: Generalized paroxysmal fast activity (GPFA) is a key electroencephalographic (EEG) feature of Lennox-Gastaut Syndrome (LGS). Automated analysis of scalp EEG has been successful in detecting more typical abnormalities. Automatic detection of GPFA has been more challenging, due to its variability from patient to patient and similarity to normal brain rhythms. In this work, a deep learning model is investigated for detection of GPFA events and estimating their overall burden from scalp EEG. METHODS: Data from 10 patients recorded during four ambulatory EEG monitoring sessions are used to generate and validate the model. All patients had confirmed LGS and were recruited into a trial for thalamic deep-brain stimulation therapy (ESTEL Trial). RESULTS: The correlation coefficient between manual and model estimates of event counts was r2 = 0.87, and for total burden was r2 = 0.91. The average GPFA detection sensitivity was 0.876, with an average false-positive rate of 3.35 per minute. There was no significant difference found between patients with early or delayed deep brain stimulation (DBS) treatment, or those with active vagal nerve stimulation (VNS). CONCLUSIONS: Overall, the deep learning model was able to accurately detect GPFA and provide accurate estimates of the overall GPFA burden and electrographic event counts, albeit with a high false-positive rate. SIGNIFICANCE: Automated GPFA detection may enable automated calculation of EEG biomarkers of burden of disease in LGS.
  • Item
    Thumbnail Image
    Seizure forecasting: Bifurcations in the long and winding road
    Baud, MO ; Proix, T ; Gregg, NM ; Brinkmann, BH ; Nurse, ES ; Cook, MJ ; Karoly, PJ (WILEY, 2023-12)
    To date, the unpredictability of seizures remains a source of suffering for people with epilepsy, motivating decades of research into methods to forecast seizures. Originally, only few scientists and neurologists ventured into this niche endeavor, which, given the difficulty of the task, soon turned into a long and winding road. Over the past decade, however, our narrow field has seen a major acceleration, with trials of chronic electroencephalographic devices and the subsequent discovery of cyclical patterns in the occurrence of seizures. Now, a burgeoning science of seizure timing is emerging, which in turn informs best forecasting strategies for upcoming clinical trials. Although the finish line might be in view, many challenges remain to make seizure forecasting a reality. This review covers the most recent scientific, technical, and medical developments, discusses methodology in detail, and sets a number of goals for future studies.
  • Item
    No Preview Available
    Sleep and seizure risk in epilepsy: bed and wake times are more important than sleep duration
    Stirling, RE ; Hidajat, CM ; Grayden, DB ; D'Souza, WJ ; Naim-Feil, J ; Dell, KL ; Schneider, LD ; Nurse, E ; Freestone, D ; Cook, MJ ; Karoly, PJ (OXFORD UNIV PRESS, 2023-07-03)
    Sleep duration, sleep deprivation and the sleep-wake cycle are thought to play an important role in the generation of epileptic activity and may also influence seizure risk. Hence, people diagnosed with epilepsy are commonly asked to maintain consistent sleep routines. However, emerging evidence paints a more nuanced picture of the relationship between seizures and sleep, with bidirectional effects between changes in sleep and seizure risk in addition to modulation by sleep stages and transitions between stages. We conducted a longitudinal study investigating sleep parameters and self-reported seizure occurrence in an ambulatory at-home setting using mobile and wearable monitoring. Sixty subjects wore a Fitbit smartwatch for at least 28 days while reporting their seizure activity in a mobile app. Multiple sleep features were investigated, including duration, oversleep and undersleep, and sleep onset and offset times. Sleep features in participants with epilepsy were compared to a large (n = 37 921) representative population of Fitbit users, each with 28 days of data. For participants with at least 10 seizure days (n = 34), sleep features were analysed for significant changes prior to seizure days. A total of 4956 reported seizures (mean = 83, standard deviation = 130) and 30 485 recorded sleep nights (mean = 508, standard deviation = 445) were included in the study. There was a trend for participants with epilepsy to sleep longer than the general population, although this difference was not significant. Just 5 of 34 participants showed a significant difference in sleep duration the night before seizure days compared to seizure-free days. However, 14 of 34 subjects showed significant differences between their sleep onset (bed) and/or offset (wake) times before seizure occurrence. In contrast to previous studies, the current study found undersleeping was associated with a marginal 2% decrease in seizure risk in the following 48 h (P < 0.01). Nocturnal seizures were associated with both significantly longer sleep durations and increased risk of a seizure occurring in the following 48 h. Overall, the presented results demonstrated that day-to-day changes in sleep duration had a minimal effect on reported seizures, while patient-specific changes in bed and wake times were more important for identifying seizure risk the following day. Nocturnal seizures were the only factor that significantly increased the risk of seizures in the following 48 h on a group level. Wearables can be used to identify these sleep-seizure relationships and guide clinical recommendations or improve seizure forecasting algorithms.
  • Item
    No Preview Available
    Brain model state space reconstruction using an LSTM neural network
    Liu, Y ; Soto-Breceda, A ; Karoly, P ; Grayden, DB ; Zhao, Y ; Cook, MJ ; Schmidt, D ; Kuhlmann, L (IOP Publishing Ltd, 2023-06-01)
    Objective. Kalman filtering has previously been applied to track neural model states and parameters, particularly at the scale relevant to electroencephalography (EEG). However, this approach lacks a reliable method to determine the initial filter conditions and assumes that the distribution of states remains Gaussian. This study presents an alternative, data-driven method to track the states and parameters of neural mass models (NMMs) from EEG recordings using deep learning techniques, specifically a long short-term memory (LSTM) neural network.Approach. An LSTM filter was trained on simulated EEG data generated by a NMM using a wide range of parameters. With an appropriately customised loss function, the LSTM filter can learn the behaviour of NMMs. As a result, it can output the state vector and parameters of NMMs given observation data as the input.Main results. Test results using simulated data yielded correlations withRsquared of around 0.99 and verified that the method is robust to noise and can be more accurate than a nonlinear Kalman filter when the initial conditions of the Kalman filter are not accurate. As an example of real-world application, the LSTM filter was also applied to real EEG data that included epileptic seizures, and revealed changes in connectivity strength parameters at the beginnings of seizures.Significance. Tracking the state vector and parameters of mathematical brain models is of great importance in the area of brain modelling, monitoring, imaging and control. This approach has no need to specify the initial state vector and parameters, which is very difficult to do in practice because many of the variables being estimated cannot be measured directly in physiological experiments. This method may be applied using any NMM and, therefore, provides a general, novel, efficient approach to estimate brain model variables that are often difficult to measure.
  • Item
    No Preview Available
    Risk of sudden unexpected death in epilepsy (SUDEP) with lamotrigine and other sodium channel-modulating antiseizure medications
    Nightscales, R ; Barnard, S ; Laze, J ; Chen, Z ; Tao, G ; Auvrez, C ; Sivathamboo, S ; Cook, MJ ; Kwan, P ; Friedman, D ; Berkovic, SF ; D'Souza, W ; Perucca, P ; Devinsky, O ; O'Brien, TJ (WILEY, 2023-06)
    OBJECTIVE: In vitro data prompted U.S Food and Drug Administration warnings that lamotrigine, a common sodium channel modulating anti-seizure medication (NaM-ASM), could increase the risk of sudden death in patients with structural or ischaemic cardiac disease, however, its implications for Sudden Unexpected Death in Epilepsy (SUDEP) are unclear. METHODS: This retrospective, nested case-control study identified 101 sudden unexpected death in epilepsy (SUDEP) cases and 199 living epilepsy controls from Epilepsy Monitoring Units (EMUs) in Australia and the USA. Differences in proportions of lamotrigine and NaM-ASM use were compared between cases and controls at the time of admission, and survival analyses from the time of admission up to 16 years were conducted. Multivariable logistic regression and survival analyses compared each ASM subgroup adjusting for SUDEP risk factors. RESULTS: Proportions of cases and controls prescribed lamotrigine (P = 0.166), one NaM-ASM (P = 0.80), or ≥2NaM-ASMs (P = 0.447) at EMU admission were not significantly different. Patients taking lamotrigine (adjusted hazard ratio [aHR] = 0.56; P = 0.054), one NaM-ASM (aHR = 0.8; P = 0.588) or ≥2 NaM-ASMs (aHR = 0.49; P = 0.139) at EMU admission were not at increased SUDEP risk up to 16 years following admission. Active tonic-clonic seizures at EMU admission associated with >2-fold SUDEP risk, irrespective of lamotrigine (aHR = 2.24; P = 0.031) or NaM-ASM use (aHR = 2.25; P = 0.029). Sensitivity analyses accounting for incomplete ASM data at follow-up suggest undetected changes to ASM use are unlikely to alter our results. SIGNIFICANCE: This study provides additional evidence that lamotrigine and other NaM-ASMs are unlikely to be associated with an increased long-term risk of SUDEP, up to 16 years post-EMU admission.
  • Item
    No Preview Available
    Ambient air pollution and epileptic seizures: A panel study in Australia
    Chen, Z ; Yu, W ; Xu, R ; Karoly, PJ ; Maturana, M ; Payne, DE ; Li, L ; Nurse, ES ; Freestone, DR ; Li, S ; Burkitt, AN ; Cook, MJ ; Guo, Y ; Grayden, DB (WILEY, 2022-07)
    OBJECTIVE: Emerging evidence has shown that ambient air pollution affects brain health, but little is known about its effect on epileptic seizures. This work aimed to assess the association between daily exposure to ambient air pollution and the risk of epileptic seizures. METHODS: This study used epileptic seizure data from two independent data sources (NeuroVista and Seer App seizure diary). In the NeuroVista data set, 3273 seizures were recorded using intracranial electroencephalography (iEEG) from 15 participants with refractory focal epilepsy in Australia in 2010-2012. In the seizure diary data set, 3419 self-reported seizures were collected through a mobile application from 34 participants with epilepsy in Australia in 2018-2021. Daily average concentrations of carbon monoxide (CO), nitrogen dioxide (NO2 ), ozone (O3 ), particulate matter ≤10 μm in diameter (PM10 ), and sulfur dioxide (SO2 ) were retrieved from the Environment Protection Authority (EPA) based on participants' postcodes. A patient-time-stratified case-crossover design with the conditional Poisson regression model was used to determine the associations between air pollutants and epileptic seizures. RESULTS: A significant association between CO concentrations and epileptic seizure risks was observed, with an increased seizure risk of 4% (relative risk [RR]: 1.04, 95% confidence interval [CI]: 1.01-1.07) for an interquartile range (IQR) increase of CO concentrations (0.13 parts per million), whereas no significant associations were found for the other four air pollutants in the whole study population. Female participants had a significantly increased risk of seizures when exposed to elevated CO and NO2 , with RRs of 1.05 (95% CI: 1.01-1.08) and 1.09 (95% CI: 1.01-1.16), respectively. In addition, a significant association was observed between CO and the risk of subclinical seizures (RR: 1.20, 95% CI: 1.12-1.28). SIGNIFICANCE: Daily exposure to elevated CO concentrations may be associated with an increased risk of epileptic seizures, especially for subclinical seizures.
  • Item
    Thumbnail Image
    Dynamical Network Models From EEG and MEG for Epilepsy Surgery-A Quantitative Approach.
    Cao, M ; Vogrin, SJ ; Peterson, ADH ; Woods, W ; Cook, MJ ; Plummer, C (Frontiers Media, 2022)
    There is an urgent need for more informative quantitative techniques that non-invasively and objectively assess strategies for epilepsy surgery. Invasive intracranial electroencephalography (iEEG) remains the clinical gold standard to investigate the nature of the epileptogenic zone (EZ) before surgical resection. However, there are major limitations of iEEG, such as the limited spatial sampling and the degree of subjectivity inherent in the analysis and clinical interpretation of iEEG data. Recent advances in network analysis and dynamical network modeling provide a novel aspect toward a more objective assessment of the EZ. The advantage of such approaches is that they are data-driven and require less or no human input. Multiple studies have demonstrated success using these approaches when applied to iEEG data in characterizing the EZ and predicting surgical outcomes. However, the limitations of iEEG recordings equally apply to these studies-limited spatial sampling and the implicit assumption that iEEG electrodes, whether strip, grid, depth or stereo EEG (sEEG) arrays, are placed in the correct location. Therefore, it is of interest to clinicians and scientists to see whether the same analysis and modeling techniques can be applied to whole-brain, non-invasive neuroimaging data (from MRI-based techniques) and neurophysiological data (from MEG and scalp EEG recordings), thus removing the limitation of spatial sampling, while safely and objectively characterizing the EZ. This review aims to summarize current state of the art non-invasive methods that inform epilepsy surgery using network analysis and dynamical network models. We also present perspectives on future directions and clinical applications of these promising approaches.
  • Item
    Thumbnail Image
    Preclinical safety study of a fully implantable, sub-scalp ring electrode array for long-term EEG recordings
    Benovitski, YB ; Lai, A ; Saunders, A ; McGowan, CC ; Burns, O ; Nayagam, DAX ; Millard, R ; Harrison, M ; Rathbone, GD ; Williams, RA ; May, CN ; Murphy, M ; D'Souza, WJ ; Cook, MJ ; Williams, CE (IOP Publishing Ltd, 2022-06-01)
    OBJECTIVE: Long-term electroencephalogram (EEG) recordings can aid diagnosis and management of various neurological conditions such as epilepsy. In this study we characterize the safety and stability of a clinical grade ring electrode arrays by analyzing EEG recordings, fluoroscopy, and computed tomography (CT) imaging with long-term implantation and histopathological tissue response. APPROACH: Seven animals were chronically implanted with EEG recording array consisting of four electrode contacts. Recordings were made bilaterally using a bipolar longitudinal montage. The array was connected to a fully implantable micro-processor controlled electronic device with two low-noise differential amplifiers and a transmitter-receiver coil. An external wearable was used to power, communicate with the implant via an inductive coil, and store the data. The sub-scalp electrode arrays were made using medical grade silicone and platinum. The electrode arrays were tunneled in the subgaleal cleavage plane between the periosteum and the overlying dermis. These were implanted for 3-7 months before euthanasia and histopathological assessment. EEG and impedance were recorded throughout the study. MAIN RESULTS: Impedance measurements remained low throughout the study for 11 of 12 channels over the recording period ranged from 3 to 5 months. There was also a steady amplitude of slow-wave EEG and chewing artifact (noise). The post-mortem CT and histopathology showed the electrodes remained in the subgaleal plane in 6 of 7 sheep. There was minimal inflammation with a thin fibrotic capsule that ranged from 4 to 101μm. There was a variable fibrosis in the subgaleal plane extending from 210 to 3617μm (S3-S7) due to surgical cleavage. One sheep had an inflammatory reaction due to electrode extrusion. The passive electrode array extraction force was around 1N. SIGNIFICANCE: Results show sub-scalp electrode placement was safe and stable for long term implantation. This is advantageous for diagnosis and management of neurological conditions where long-term, EEG monitoring is required.