Medicine (St Vincent's) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 2278
  • Item
    No Preview Available
  • Item
    No Preview Available
  • Item
    No Preview Available
    Mdt1 facilitates efficient repair of blocked DNA double-strand breaks and recombinational maintenance of telomeresv
    Pike, BL ; Heierhorst, J (AMER SOC MICROBIOLOGY, 2007-09)
    DNA recombination plays critical roles in DNA repair and alternative telomere maintenance. Here we show that absence of the SQ/TQ cluster domain-containing protein Mdt1 (Ybl051c) renders Saccharomyces cerevisiae particularly hypersensitive to bleomycin, a drug that causes 3'-phospho-glycolate-blocked DNA double-strand breaks (DSBs). mdt1Delta also hypersensitizes partially recombination-defective cells to camptothecin-induced 3'-phospho-tyrosyl protein-blocked DSBs. Remarkably, whereas mdt1Delta cells are unable to restore broken chromosomes after bleomycin treatment, they efficiently repair "clean" endonuclease-generated DSBs. Epistasis analyses indicate that MDT1 acts in the repair of bleomycin-induced DSBs by regulating the efficiency of the homologous recombination pathway as well as telomere-related functions of the KU complex. Moreover, mdt1Delta leads to severe synthetic growth defects with a deletion of the recombination facilitator and telomere-positioning factor gene CTF18 already in the absence of exogenous DNA damage. Importantly, mdt1Delta causes a dramatic shift from the usually prevalent type II to the less-efficient type I pathway of recombinational telomere maintenance in the absence of telomerase in liquid senescence assays. As telomeres resemble protein-blocked DSBs, the results indicate that Mdt1 acts in a novel blocked-end-specific recombination pathway that is required for the efficiency of both drug-induced DSB repair and telomerase-independent telomere maintenance.
  • Item
    No Preview Available
    Molecular Basis for Lysine Specificity in the Yeast Ubiquitin-Conjugating Enzyme Cdc34
    Sadowski, M ; Suryadinata, R ; Lai, X ; Heierhorst, J ; Sarcevic, B (AMER SOC MICROBIOLOGY, 2010-05-15)
    Ubiquitin (Ub)-conjugating enzymes (E2s) and ubiquitin ligases (E3s) catalyze the attachment of Ub to lysine residues in substrates and Ub during monoubiquitination and polyubiquitination. Lysine selection is important for the generation of diverse substrate-Ub structures, which provides versatility to this pathway in the targeting of proteins to different fates. The mechanisms of lysine selection remain poorly understood, with previous studies suggesting that the ubiquitination site(s) is selected by the E2/E3-mediated positioning of a lysine(s) toward the E2/E3 active site. By studying the polyubiquitination of Sic1 by the E2 protein Cdc34 and the RING E3 Skp1/Cul1/F-box (SCF) protein, we now demonstrate that in addition to E2/E3-mediated positioning, proximal amino acids surrounding the lysine residues in Sic1 and Ub are critical for ubiquitination. This mechanism is linked to key residues composing the catalytic core of Cdc34 and independent of SCF. Changes to these core residues altered the lysine preference of Cdc34 and specified whether this enzyme monoubiquitinated or polyubiquitinated Sic1. These new findings indicate that compatibility between amino acids surrounding acceptor lysine residues and key amino acids in the catalytic core of ubiquitin-conjugating enzymes is an important mechanism for lysine selection during ubiquitination.
  • Item
    No Preview Available
    Impaired cardiac contractility response to hemodynamic stress in S100A1-deficient mice
    Du, XJ ; Cole, TJ ; Tenis, N ; Gao, XM ; Köntgen, F ; Kemp, BE ; Heierhorst, J (AMER SOC MICROBIOLOGY, 2002-04)
    Ca(2+) signaling plays a central role in cardiac contractility and adaptation to increased hemodynamic demand. We have generated mice with a targeted deletion of the S100A1 gene coding for the major cardiac isoform of the large multigenic S100 family of EF hand Ca(2+)-binding proteins. S100A1(-/-) mice have normal cardiac function under baseline conditions but have significantly reduced contraction rate and relaxation rate responses to beta-adrenergic stimulation that are associated with a reduced Ca(2+) sensitivity. In S100A1(-/-) mice, basal left-ventricular contractility deteriorated following 3-week pressure overload by thoracic aorta constriction despite a normal adaptive hypertrophy. Surprisingly, heterozygotes also had an impaired response to acute beta-adrenergic stimulation but maintained normal contractility in response to chronic pressure overload that coincided with S100A1 upregulation to wild-type levels. In contrast to other genetic models with impaired cardiac contractility, loss of S100A1 did not lead to cardiac hypertrophy or dilation in aged mice. The data demonstrate that high S100A1 protein levels are essential for the cardiac reserve and adaptation to acute and chronic hemodynamic stress in vivo.
  • Item
    No Preview Available
    Generation and analysis of Siah2 mutant mice
    Frew, IJ ; Hammond, VE ; Dickins, RA ; Quinn, JMW ; Walkley, CR ; Sims, NA ; Schnall, R ; Della, NG ; Holloway, AJ ; Digby, MR ; Janes, PW ; Tarlinton, DM ; Purton, LE ; Gillespie, MT ; Bowtell, DDL (AMER SOC MICROBIOLOGY, 2003-12)
    Siah proteins function as E3 ubiquitin ligase enzymes to target the degradation of diverse protein substrates. To characterize the physiological roles of Siah2, we have generated and analyzed Siah2 mutant mice. In contrast to Siah1a knockout mice, which are growth retarded and exhibit defects in spermatogenesis, Siah2 mutant mice are fertile and largely phenotypically normal. While previous studies implicate Siah2 in the regulation of TRAF2, Vav1, OBF-1, and DCC, we find that a variety of responses mediated by these proteins are unaffected by loss of Siah2. However, we have identified an expansion of myeloid progenitor cells in the bone marrow of Siah2 mutant mice. Consistent with this, we show that Siah2 mutant bone marrow produces more osteoclasts in vitro than wild-type bone marrow. The observation that combined Siah2 and Siah1a mutation causes embryonic and neonatal lethality demonstrates that the highly homologous Siah proteins have partially overlapping functions in vivo.
  • Item
    No Preview Available
    Mdt1, a novel Rad53 FHA1 domain-interacting protein, modulates DNA damage tolerance and G2/M cell cycle progression in Saccharomyces cerevisiae
    Pike, BL ; Yongkiettrakul, S ; Tsai, MD ; Heierhorst, J (AMER SOC MICROBIOLOGY, 2004-04)
    The Rad53 kinase plays a central role in yeast DNA damage checkpoints. Rad53 contains two FHA phosphothreonine-binding domains that are required for Rad53 activation and possibly downstream signaling. Here we show that the N-terminal Rad53 FHA1 domain interacts with the RNA recognition motif, coiled-coil, and SQ/TQ cluster domain-containing protein Mdt1 (YBl051C). The interaction of Rad53 and Mdt1 depends on the structural integrity of the FHA1 phosphothreonine-binding site as well as threonine-305 of Mdt1. Mdt1 is constitutively threonine phosphorylated and hyperphosphorylated in response to DNA damage in vivo. DNA damage-dependent Mdt1 hyperphosphorylation depends on the Mec1 and Tel1 checkpoint kinases, and Mec1 can directly phosphorylate a recombinant Mdt1 SQ/TQ domain fragment. MDT1 overexpression is synthetically lethal with a rad53 deletion, whereas mdt1 deletion partially suppresses the DNA damage hypersensitivity of checkpoint-compromised strains and generally improves DNA damage tolerance. In the absence of DNA damage, mdt1 deletion leads to delayed anaphase completion, with an elongated cell morphology reminiscent of that of G(2)/M cell cycle mutants. mdt1-dependent and DNA damage-dependent cell cycle delays are not additive, suggesting that they act in the same pathway. The data indicate that Mdt1 is involved in normal G(2)/M cell cycle progression and is a novel target of checkpoint-dependent cell cycle arrest pathways.
  • Item
    No Preview Available
    Vascular endothelial growth factor d is dispensable for development of the lymphatic system
    Baldwin, ME ; Halford, MA ; Roufail, S ; Williams, RA ; Hibbs, ML ; Grail, D ; Kubo, H ; Stacker, SA ; Achen, MG (AMER SOC MICROBIOLOGY, 2005-03)
    Vascular endothelial growth factor receptor 3 (Vegfr-3) is a tyrosine kinase that is expressed on the lymphatic endothelium and that signals for the growth of the lymphatic vessels (lymphangiogenesis). Vegf-d, a secreted glycoprotein, is one of two known activating ligands for Vegfr-3, the other being Vegf-c. Vegf-d stimulates lymphangiogenesis in tissues and tumors; however, its role in embryonic development was previously unknown. Here we report the generation and analysis of mutant mice deficient for Vegf-d. Vegf-d-deficient mice were healthy and fertile, had normal body mass, and displayed no pathologic changes consistent with a defect in lymphatic function. The lungs, sites of strong Vegf-d gene expression during embryogenesis in wild-type mice, were normal in Vegf-d-deficient mice with respect to tissue mass and morphology, except that the abundance of the lymphatics adjacent to bronchioles was slightly reduced. Dye uptake experiments indicated that large lymphatics under the skin were present in normal locations and were functional. Smaller dermal lymphatics were similar in number, location, and function to those in wild-type controls. The lack of a profound lymphatic phenotype in Vegf-d-deficient mice suggests that Vegf-d does not play a major role in lymphatic development or that Vegf-c or another, as-yet-unknown activating Vegfr-3 ligand can compensate for Vegf-d during development.
  • Item
    No Preview Available
    Study protocol and statistical analysis plan for the Liberal Glucose Control in Critically Ill Patients with Pre-existing Type 2 Diabetes (LUCID) trial
    Poole, AP ; Finnis, ME ; Anstey, J ; Bellomo, R ; Bihari, S ; Biradar, V ; Doherty, S ; Eastwood, G ; Finfer, S ; French, CJ ; Ghosh, A ; Heller, S ; Horowitz, M ; Kar, P ; Kruger, PS ; Maiden, MJ ; Martensson, J ; McArthur, CJ ; McGuinness, SP ; Secombe, PJ ; Tobin, AE ; Udy, AA ; Young, PJ ; Deane, AM (AUSTRALASIAN MED PUBL CO LTD, 2020-06)
    BACKGROUND: Contemporary glucose management of intensive care unit (ICU) patients with type 2 diabetes is based on trial data derived predominantly from patients without type 2 diabetes. This is despite the recognition that patients with type 2 diabetes may be relatively more tolerant of hyperglycaemia and more susceptible to hypoglycaemia. It is uncertain whether glucose targets should be more liberal in patients with type 2 diabetes. OBJECTIVE: To detail the protocol, analysis and reporting plans for a randomised clinical trial - the Liberal Glucose Control in Critically Ill Patients with Pre-existing Type 2 Diabetes (LUCID) trial - which will evaluate the risks and benefits of targeting a higher blood glucose range in patients with type 2 diabetes. DESIGN, SETTING, PARTICIPANTS AND INTERVENTION: A multicentre, parallel group, open label phase 2B randomised controlled clinical trial of 450 critically ill patients with type 2 diabetes. Patients will be randomised 1:1 to liberal blood glucose (target 10.0-14.0 mmol/L) or usual care (target 6.0-10.0 mmol/L). MAIN OUTCOME MEASURES: The primary endpoint is incident hypoglycaemia (< 4.0 mmol/L) during the study intervention. Secondary endpoints include biochemical and feasibility outcomes. RESULTS AND CONCLUSION: The study protocol and statistical analysis plan described will delineate conduct and analysis of the trial, such that analytical and reporting bias are minimised. TRIAL REGISTRATION: This trial has been registered on the Australian New Zealand Clinical Trials Registry (ACTRN No. 12616001135404) and has been endorsed by the Australian and New Zealand Intensive Care Society Clinical Trials Group.
  • Item
    Thumbnail Image
    Effect of Disease-Modifying Therapy on Disability in Relapsing-Remitting Multiple Sclerosis Over 15 Years
    Kalincik, T ; Diouf, I ; Sharmin, S ; Malpas, C ; Spelman, T ; Horakova, D ; Havrdova, EK ; Trojano, M ; Izquierdo, G ; Lugaresi, A ; Prat, A ; Girard, M ; Duquette, P ; Grammond, P ; Jokubaitis, V ; Van der Walt, A ; Grand'Maison, F ; Sola, P ; Ferraro, D ; Shaygannejad, V ; Alroughani, R ; Hupperts, R ; Terzi, M ; Boz, C ; Lechner-Scott, J ; Pucci, E ; Van Pesch, V ; Granella, F ; Bergamaschi, R ; Spitaleri, D ; Slee, M ; Vucic, S ; Ampapa, R ; McCombe, P ; Ramo-Tello, C ; Prevost, J ; Olascoaga, J ; Cristiano, E ; Barnett, M ; Saladino, ML ; Sanchez-Menoyo, JL ; Hodgkinson, S ; Rozsa, C ; Hughes, S ; Moore, F ; Shaw, C ; Butler, E ; Skibina, O ; Gray, O ; Kermode, A ; Csepany, T ; Singhal, B ; Shuey, N ; Piroska, I ; Taylor, B ; Simo, M ; Sirbu, C-A ; Sas, A ; Butzkueven, H (LIPPINCOTT WILLIAMS & WILKINS, 2021-02-02)
    OBJECTIVE: To test the hypothesis that immunotherapy prevents long-term disability in relapsing-remitting multiple sclerosis (MS), we modeled disability outcomes in 14,717 patients. METHODS: We studied patients from MSBase followed for ≥1 year, with ≥3 visits, ≥1 visit per year, and exposed to MS therapy, and a subset of patients with ≥15-year follow-up. Marginal structural models were used to compare the cumulative hazards of 12-month confirmed increase and decrease in disability, Expanded Disability Status Scale (EDSS) step 6, and the incidence of relapses between treated and untreated periods. Marginal structural models were continuously readjusted for patient age, sex, pregnancy, date, disease course, time from first symptom, prior relapse history, disability, and MRI activity. RESULTS: A total of 14,717 patients were studied. During the treated periods, patients were less likely to experience relapses (hazard ratio 0.60, 95% confidence interval [CI] 0.43-0.82, p = 0.0016), worsening of disability (0.56, 0.38-0.82, p = 0.0026), and progress to EDSS step 6 (0.33, 0.19-0.59, p = 0.00019). Among 1,085 patients with ≥15-year follow-up, the treated patients were less likely to experience relapses (0.59, 0.50-0.70, p = 10-9) and worsening of disability (0.81, 0.67-0.99, p = 0.043). CONCLUSION: Continued treatment with MS immunotherapies reduces disability accrual by 19%-44% (95% CI 1%-62%), the risk of need of a walking aid by 67% (95% CI 41%-81%), and the frequency of relapses by 40-41% (95% CI 18%-57%) over 15 years. This study provides evidence that disease-modifying therapies are effective in improving disability outcomes in relapsing-remitting MS over the long term. CLASSIFICATION OF EVIDENCE: This study provides Class IV evidence that, for patients with relapsing-remitting MS, long-term exposure to immunotherapy prevents neurologic disability.