Medicine (St Vincent's) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    Interleukin (IL)-6 induction of osteoclast differentiation depends on IL-6 receptors expressed on osteoblastic cells but not on osteoclast progenitors.
    Udagawa, N ; Takahashi, N ; Katagiri, T ; Tamura, T ; Wada, S ; Findlay, DM ; Martin, TJ ; Hirota, H ; Taga, T ; Kishimoto, T ; Suda, T (Rockefeller University Press, 1995-11-01)
    We reported that interleukin (IL) 6 alone cannot induce osteoclast formation in cocultures of mouse bone marrow and osteoblastic cells, but soluble IL-6 receptor (IL-6R) strikingly triggered osteoclast formation induced by IL-6. In this study, we examined the mechanism of osteoclast formation by IL-6 and related cytokines through the interaction between osteoblastic cells and osteoclast progenitors. When dexamethasone was added to the cocultures, IL-6 could stimulate osteoclast formation without the help of soluble IL-6R. Osteoblastic cells expressed a very low level of IL-6R mRNA, whereas fresh mouse spleen and bone marrow cells, both of which are considered to be osteoclast progenitors, constitutively expressed relatively high levels of IL-6R mRNA. Treatment of osteoblastic cells with dexamethasone induced a marked increase in the expression of IL-6R mRNA. By immunoblotting with antiphosphotyrosine antibody, IL-6 did not tyrosine-phosphorylate a protein with a molecular mass of 130 kD in osteoblastic cells but did so in dexamethasone-pretreated osteoblastic cells. Osteoblastic cells from transgenic mice constitutively expressing human IL-6R could support osteoclast development in the presence of human IL-6 alone in cocultures with normal spleen cells. In contrast, osteoclast progenitors in spleen cells from transgenic mice overexpressing human IL-6R were not able to differentiate into osteoclasts in response to IL-6 in cocultures with normal osteoblastic cells. These results clearly indicate that the ability of IL-6 to induce osteoclast differentiation depends on signal transduction mediated by IL-6R expressed on osteoblastic cells but not on osteoclast progenitors.
  • Item
    Thumbnail Image
    Alternative promoter usage and mRNA splicing pathways for parathyroid hormone-related protein in normal tissues and tumours.
    Southby, J ; O'Keeffe, LM ; Martin, TJ ; Gillespie, MT (Springer Science and Business Media LLC, 1995-09)
    The parathyroid hormone-related protein (PTHrP) gene consists of nine exons and allows the production of multiple PTHrP mRNA species via the use of three promoters and 5' and 3' alternative splicing; as a result of 3' alternative splicing one of three protein isoforms may be produced. This organisation has potential for tissue-specific splicing patterns. We examined PTHrP mRNA expression and splicing patterns in a series of tumours and normal tissues, using the sensitive reverse transcription-polymerase chain reaction (RT-PCR) technique. Use of promoter 3 and mRNA specifying the 141 amino acid PTHrP isoform were detected in all samples. Transcripts encoding the 139 amino acid isoform were detected in all but two samples. Use of promoters 1 and 2 was less widespread as was detection of mRNA encoding the 173 amino acid isoform. While different PTHrP splicing patterns were observed between tumours, no tissue- or tumour-specific transcripts were detected. In comparing normal and tumour tissue from the same patient, an increase in the number of promoters utilised was observed in the tumour tissue. Furthermore, mRNA for the PTH/PTHrP receptor was detected in all samples, thus the PTHrP produced by these tumours may potentially act in an autocrine or paracrine fashion.
  • Item
    Thumbnail Image
    Interleukin-18 (interferon-gamma-inducing factor) is produced by osteoblasts and acts via granulocyte/macrophage colony-stimulating factor and not via interferon-gamma to inhibit osteoclast formation
    Udagawa, N ; Horwood, NJ ; Elliott, J ; Mackay, A ; Owens, J ; Okamura, H ; Kurimoto, M ; Chambers, TJ ; Martin, TJ ; Gillespie, MT (ROCKEFELLER UNIV PRESS, 1997-03-17)
    We have established by differential display polymerase chain reaction of mRNA that interleukin (IL)-18 is expressed by osteoblastic stromal cells. The stromal cell populations used for comparison differed in their ability to promote osteoclast-like multinucleated cell (OCL) formation. mRNA for IL-18 was found to be expressed in greater abundance in lines that were unable to support OCL formation than in supportive cells. Recombinant IL-18 was found to inhibit OCL formation in cocultures of osteoblasts and hemopoietic cells of spleen or bone marrow origin. IL-18 inhibited OCL formation in the presence of osteoclastogenic agents including 1alpha,25-dihydroxyvitamin D3, prostaglandin E2, parathyroid hormone, IL-1, and IL-11. The inhibitory effect of IL-18 was limited to the early phase of the cocultures, which coincides with proliferation of hemopoietic precursors. IL-18 has been reported to induce interferon-gamma (IFN-gamma) and granulocyte/macrophage colony-stimulating factor (GM-CSF) production in T cells, and both agents also inhibit OCL formation in vitro. Neutralizing antibodies to GM-CSF were able to rescue IL-18 inhibition of OCL formation, whereas neutralizing antibodies to IFN-gamma did not. In cocultures with osteoblasts and spleen cells from IFN-gamma receptor type II-deficient mice, IL-18 was found to inhibit OCL formation, indicating that IL-18 acted independently of IFN-gamma production: IFN-gamma had no effect in these cocultures. Additionally, in cocultures in which spleen cells were derived from receptor-deficient mice and osteoblasts were from wild-type mice and vice versa, we identified that the target cells for IFN-gamma inhibition of OCL formation were the hemopoietic cells. The work provides evidence that IL-18 is expressed by osteoblasts and inhibits OCL formation via GM-CSF production and not via IFN-gamma production.