Medicine (St Vincent's) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 11
  • Item
    Thumbnail Image
    PATIENT-SPECIFIC NEURAL MASS MODELING - STOCHASTIC AND DETERMINISTIC METHODS
    Freestone, DR ; Kuhlmann, L ; Chong, MS ; Nesic, D ; Grayden, DB ; Aram, P ; Postoyan, R ; CooK, MJ ; Tetzlaff, R ; Elger, CE ; Lehnertz, K (WORLD SCIENTIFIC PUBL CO PTE LTD, 2013)
    Deterministic and stochastic methods for online state and parameter estimation for neural mass models are presented and applied to synthetic and real seizure electrocorticographic signals in order to determine underlying brain changes that cannot easily be measured. The first ever online estimation of neural mass model parameters from real seizure data is presented. It is shown that parameter changes occur that are consistent with expected brain changes underlying seizures, such as increases in postsynaptic potential amplitudes, increases in the inhibitory postsynaptic time-constant and decreases in the firing threshold at seizure onset, as well as increases in the firing threshold as the seizure progresses towards termination. In addition, the deterministic and stochastic estimation methods are compared and contrasted. This work represents an important foundation for the development of biologically-inspired methods to image underlying brain changes and to develop improved methods for neurological monitoring, control and treatment.
  • Item
    Thumbnail Image
    State and parameter estimation of nonlinear systems: a multi-observer approach
    Chong, MS ; Nesic, D ; Postoyan, R ; Kuhlmann, L (IEEE, 2014)
    We present a multi-observer approach for the parameter and state estimation of continuous-time nonlinear systems. For nominal parameter values in the known parameter set, state observers are designed with a robustness property. At any time instant, one observer is selected by a given criterion to provide its state estimate and its corresponding nominal parameter value. Provided that a persistency of excitation condition holds, we guarantee the convergence of state and parameter estimates up to a given margin of error which can be reduced by increasing the number of observers. The potential computational burden of the scheme is eased by introducing a dynamic parameter re-sampling technique, where the nominal parameter values are iteratively updated using a zoom-in procedure on the parameter set. We illustrate the efficacy of the algorithm on a model of neural dynamics.
  • Item
    Thumbnail Image
    Parameter and State Estimation of Nonlinear Systems Using a Multi-Observer Under the Supervisory Framework
    Chong, MS ; Nesic, D ; Postoyan, R ; Kuhlmann, L (IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2015-09)
    We present a hybrid scheme for the parameter and state estimation of nonlinear continuous-time systems, which is inspired by the supervisory setup used for control. State observers are synthesized for some nominal parameter values and a criterion is designed to select one of these observers at any given time instant, which provides state and parameter estimates. Assuming that a persistency of excitation condition holds, the convergence of the parameter and state estimation errors to zero is ensured up to a margin, which can be made as small as desired by increasing the number of observers. To reduce the potential computational complexity of the scheme, we explain how the sampling of the parameter set can be dynamically updated using a zoom-in procedure. This strategy typically requires a fewer number of observers for a given estimation error margin compared to the static sampling policy. The results are shown to be applicable to linear systems and to a class of nonlinear systems. We illustrate the applicability of the approach by estimating the synaptic gains and the mean membrane potentials of a neural mass model.
  • Item
    Thumbnail Image
    Postictal suppression and seizure durations: A patient-specific, long-term iEEG analysis
    Payne, DE ; Karoly, PJ ; Freestone, DR ; Boston, R ; D'Souza, W ; Nurse, E ; Kuhlmann, L ; Cook, MJ ; Grayden, DB (WILEY, 2018-05)
    OBJECTIVE: We report on patient-specific durations of postictal periods in long-term intracranial electroencephalography (iEEG) recordings. The objective was to investigate the relationship between seizure duration and postictal suppression duration. METHODS: Long-term recording iEEG from 9 patients (>50 seizures recorded) were analyzed. In total, 2310 seizures were recorded during a total of 13.8 years of recording. Postictal suppression duration was calculated as the duration after seizure termination until total signal energy returned to background levels. The relationship between seizure duration and postictal suppression duration was quantified using the correlation coefficient (r). The effects of populations of seizures within patients, on correlations, were also considered. Populations of seizures within patients were distinguished by seizure duration thresholds and k-means clustering along the dimensions of seizure duration and postictal suppression duration. The effects of bursts of seizures were also considered by defining populations based on interseizure interval (ISI). RESULTS: Seizure duration accounted for 40% of postictal suppression duration variance, aggregated across all patients and seizures. Seizure duration accounted for more than 25% of the variance in postictal suppression duration in 2 patients and accounted for less than 25% in the remaining 7. In 3 patients, heat maps showed multiple distinct postictal patterns indicating multiple populations of seizures. When accounting for these populations, seizure duration accounted for less than 25% of the variance in postictal duration in all populations. Variance in postictal suppression duration accounted for less than 10% of ISI variance in all patients. SIGNIFICANCE: We have previously demonstrated that some patients have multiple seizure populations distinguishable by seizure duration. This article shows that different seizure populations have distinct and consistent postictal behaviors. The existence of multiple populations in some patients has implications for seizure management and forecasting, whereas the distinct postictal behaviors may have implications for sudden unexpected death in epilepsy (SUDEP) prediction and prevention.
  • Item
    Thumbnail Image
    Mechanisms of Seizure Propagation in 2-Dimensional Centre-Surround Recurrent Networks
    Hall, D ; Kuhlmann, L ; Sporns, O (PUBLIC LIBRARY SCIENCE, 2013-08-13)
    Understanding how seizures spread throughout the brain is an important problem in the treatment of epilepsy, especially for implantable devices that aim to avert focal seizures before they spread to, and overwhelm, the rest of the brain. This paper presents an analysis of the speed of propagation in a computational model of seizure-like activity in a 2-dimensional recurrent network of integrate-and-fire neurons containing both excitatory and inhibitory populations and having a difference of Gaussians connectivity structure, an approximation to that observed in cerebral cortex. In the same computational model network, alternative mechanisms are explored in order to simulate the range of seizure-like activity propagation speeds (0.1-100 mm/s) observed in two animal-slice-based models of epilepsy: (1) low extracellular [Formula: see text], which creates excess excitation and (2) introduction of gamma-aminobutyric acid (GABA) antagonists, which reduce inhibition. Moreover, two alternative connection topologies are considered: excitation broader than inhibition, and inhibition broader than excitation. It was found that the empirically observed range of propagation velocities can be obtained for both connection topologies. For the case of the GABA antagonist model simulation, consistent with other studies, it was found that there is an effective threshold in the degree of inhibition below which waves begin to propagate. For the case of the low extracellular [Formula: see text] model simulation, it was found that activity-dependent reductions in inhibition provide a potential explanation for the emergence of slowly propagating waves. This was simulated as a depression of inhibitory synapses, but it may also be achieved by other mechanisms. This work provides a localised network understanding of the propagation of seizures in 2-dimensional centre-surround networks that can be tested empirically.
  • Item
    Thumbnail Image
    Modulation of Functional EEG Networks by the NMDA Antagonist Nitrous Oxide
    Kuhlmann, L ; Foster, BL ; Liley, DTJ ; Sirigu, A (PUBLIC LIBRARY SCIENCE, 2013-02-14)
    Parietal networks are hypothesised to play a central role in the cortical information synthesis that supports conscious experience and behavior. Significant reductions in parietal level functional connectivity have been shown to occur during general anesthesia with propofol and a range of other GABAergic general anesthetic agents. Using two analysis approaches (1) a graph theoretic analysis based on surrogate-corrected zero-lag correlations of scalp EEG, and (2) a global coherence analysis based on the EEG cross-spectrum, we reveal that sedation with the NMDA receptor antagonist nitrous oxide (N2O), an agent that has quite different electroencephalographic effects compared to the inductive general anesthetics, also causes significant alterations in parietal level functional networks, as well as changes in full brain and frontal level networks. A total of 20 subjects underwent N2O inhalation at either 20%, 40% or 60% peak N2O/O2 gas concentration levels. N2O-induced reductions in parietal network level functional connectivity (on the order of 50%) were exclusively detected by utilising a surface Laplacian derivation, suggesting that superficial, smaller spatial scale, cortical networks were most affected. In contrast reductions in frontal network functional connectivity were optimally discriminated using a common-reference derivation (reductions on the order of 10%), indicating that the NMDA antagonist N2O induces spatially coherent and widespread perturbations in frontal activity. Our findings not only give important weight to the idea of agent invariant final network changes underlying drug-induced reductions in consciousness, but also provide significant impetus for the application and development of multiscale functional analyses to systematically characterise the network level cortical effects of NMDA receptor related hypofunction. Future work at the source space level will be needed to verify the consistency between cortical network changes seen at the source level and those presented here at the EEG sensor space level.
  • Item
    No Preview Available
    The circadian profile of epilepsy improves seizure forecasting
    Karoly, PJ ; Ung, H ; Grayden, DB ; Kuhlmann, L ; Leyde, K ; Cook, MJ ; Freestone, DR (OXFORD UNIV PRESS, 2017-08)
    It is now established that epilepsy is characterized by periodic dynamics that increase seizure likelihood at certain times of day, and which are highly patient-specific. However, these dynamics are not typically incorporated into seizure prediction algorithms due to the difficulty of estimating patient-specific rhythms from relatively short-term or unreliable data sources. This work outlines a novel framework to develop and assess seizure forecasts, and demonstrates that the predictive power of forecasting models is improved by circadian information. The analyses used long-term, continuous electrocorticography from nine subjects, recorded for an average of 320 days each. We used a large amount of out-of-sample data (a total of 900 days for algorithm training, and 2879 days for testing), enabling the most extensive post hoc investigation into seizure forecasting. We compared the results of an electrocorticography-based logistic regression model, a circadian probability, and a combined electrocorticography and circadian model. For all subjects, clinically relevant seizure prediction results were significant, and the addition of circadian information (combined model) maximized performance across a range of outcome measures. These results represent a proof-of-concept for implementing a circadian forecasting framework, and provide insight into new approaches for improving seizure prediction algorithms. The circadian framework adds very little computational complexity to existing prediction algorithms, and can be implemented using current-generation implant devices, or even non-invasively via surface electrodes using a wearable application. The ability to improve seizure prediction algorithms through straightforward, patient-specific modifications provides promise for increased quality of life and improved safety for patients with epilepsy.
  • Item
    Thumbnail Image
    Seizure pathways: A model-based investigation
    Karoly, PJ ; Kuhlmann, L ; Soudry, D ; Grayden, DB ; Cook, MJ ; Freestone, DR ; Marinazzo, D (PUBLIC LIBRARY SCIENCE, 2018-10)
    We present the results of a model inversion algorithm for electrocorticography (ECoG) data recorded during epileptic seizures. The states and parameters of neural mass models were tracked during a total of over 3000 seizures from twelve patients with focal epilepsy. These models provide an estimate of the effective connectivity within intracortical circuits over the time course of seizures. Observing the dynamics of effective connectivity provides insight into mechanisms of seizures. Estimation of patients seizure dynamics revealed: 1) a highly stereotyped pattern of evolution for each patient, 2) distinct sub-groups of onset mechanisms amongst patients, and 3) different offset mechanisms for long and short seizures. Stereotypical dynamics suggest that, once initiated, seizures follow a deterministic path through the parameter space of a neural model. Furthermore, distinct sub-populations of patients were identified based on characteristic motifs in the dynamics at seizure onset. There were also distinct patterns between long and short duration seizures that were related to seizure offset. Understanding how these different patterns of seizure evolution arise may provide new insights into brain function and guide treatment for epilepsy, since specific therapies may have preferential effects on the various parameters that could potentially be individualized. Methods that unite computational models with data provide a powerful means to generate testable hypotheses for further experimental research. This work provides a demonstration that the hidden connectivity parameters of a neural mass model can be dynamically inferred from data. Our results underscore the power of theoretical models to inform epilepsy management. It is our hope that this work guides further efforts to apply computational models to clinical data.
  • Item
    Thumbnail Image
    Seizure Prediction: Science Fiction or Soon to Become Reality?
    Freestone, DR ; Karoly, PJ ; Peterson, ADH ; Kuhlmann, L ; Lai, A ; Goodarzy, F ; Cook, MJ (SPRINGER, 2015-11)
    This review highlights recent developments in the field of epileptic seizure prediction. We argue that seizure prediction is possible; however, most previous attempts have used data with an insufficient amount of information to solve the problem. The review discusses four methods for gaining more information above standard clinical electrophysiological recordings. We first discuss developments in obtaining long-term data that enables better characterisation of signal features and trends. Then, we discuss the usage of electrical stimulation to probe neural circuits to obtain robust information regarding excitability. Following this, we present a review of developments in high-resolution micro-electrode technologies that enable neuroimaging across spatial scales. Finally, we present recent results from data-driven model-based analyses, which enable imaging of seizure generating mechanisms from clinical electrophysiological measurements. It is foreseeable that the field of seizure prediction will shift focus to a more probabilistic forecasting approach leading to improvements in the quality of life for the millions of people who suffer uncontrolled seizures. However, a missing piece of the puzzle is devices to acquire long-term high-quality data. When this void is filled, seizure prediction will become a reality.
  • Item
    Thumbnail Image
    Assessing nitrous oxide effect using electroencephalographically-based depth of anesthesia measures cortical state and cortical input
    Kuhlmann, L ; Liley, DTJ (SPRINGER HEIDELBERG, 2018-02)
    Existing electroencephalography (EEG) based depth of anesthesia monitors cannot reliably track sedative or anesthetic states during n-methyl-D-aspartate (NMDA) receptor antagonist based anesthesia with ketamine or nitrous oxide (N2O). Here, a physiologically-motivated depth of anesthesia monitoring algorithm based on autoregressive-moving-average (ARMA) modeling and derivative measures of interest, Cortical State (CS) and Cortical Input (CI), is retrospectively applied in an exploratory manner to the NMDA receptor antagonist N2O, an adjuvant anesthetic gas used in clinical practice. Composite Cortical State (CCS) and Composite Cortical State distance (CCSd), two new modifications of CS, along with CS and CI were evaluated on electroencephalographic (EEG) data of healthy control individuals undergoing N2O inhalation up to equilibrated peak gas concentrations of 20, 40 or 60% N2O/O2. In particular, CCSd has been devised to vary consistently for increasing levels of anesthetic concentration independent of the anesthetic's microscopic mode of action for both N2O and propofol. The strongest effects were observed for the 60% peak gas concentration group. For the 50-60% peak gas levels, individuals showed statistically significant reductions in responsiveness compared to rest, and across the group CS and CCS increased by 39 and 42%, respectively, while CCSd was found to decrease by 398%. On the other hand a clear conclusion regarding the changes in CI could not be reached. These results indicate that, contrary to previous depth of anesthesia monitoring measures, the CS, CCS, and especially CCSd measures derived from frontal EEG are potentially useful for differentiating gas concentration and responsiveness levels in people under N2O. On the other hand, determining the utility of CI in this regard will require larger sample sizes and potentially higher gas concentrations. Future work will assess the sensitivity of CS-based and CI measures to other anesthetics and their utility in a clinical environment.