Medicine (St Vincent's) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    A circle criterion observer for estimating the unmeasured membrane potential of neuronal populations
    Chong, M ; Postoyan, R ; Nešić, D ; Kuhlmann, L ; Varsavsky, A (IEEE, 2011-12-01)
    A circle criterion observer is designed for estimating the unmeasured membrane potential of neuronal populations using the electroencephalogram (EEG) from a class of parameterised models that replicates patterns seen on the EEG. Compared to existing similar designs, we provide a less conservative linear matrix inequality (LMI) condition that is shown to be fulfilled for the neural models we consider. The designed observer is robust towards disturbances in the input and measurement, as well as model uncertainty. We show that the observer can be designed for a model that reproduces alpha rhythms in the EEG as an illustrative example.
  • Item
    Thumbnail Image
    Parameter and state estimation for a class of neural mass models
    Postoyan, R ; Chong, M ; Nesic, D ; Kuhlmann, L (IEEE, 2012-01-01)
    We present an adaptive observer which asymptotically reconstructs the parameters and states of a model of interconnected cortical columns. Our study is motivated by the fact that the considered model is able to realistically reproduce patterns seen on (intracranial) electroencephalograms (EEG) by varying its parameters. Therefore, by estimating its parameters and states, we could gain a better understanding of the mechanisms underlying neurological phenomena such as seizures, which might lead to the prediction of the onsets of epileptic seizures. Simulations are performed to illustrate our results.
  • Item
    Thumbnail Image
    A nonlinear estimator for the activity of neuronal populations in the hippocampus
    Chong, M ; Postoyan, R ; Nešić, D ; Kuhlmann, L ; Varsavsky, A (IFAC - International Federation of Automatic Control, 2011-01-01)
    We present an estimator design to reconstruct the mean membrane potential of individual neuronal populations from a single channel simulated electroencephalographic signal based on a model of the hippocampus. The robustness of the estimator against variations in the synaptic gains of the neuronal populations and disturbances in the input and measurement is studied. Our results are further illustrated in simulations.