Chemical and Biomedical Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 13
  • Item
    Thumbnail Image
    Surface Modification of Spider Silk Particles to Direct Biomolecular Corona Formation.
    Weiss, ACG ; Herold, HM ; Lentz, S ; Faria, M ; Besford, QA ; Ang, C-S ; Caruso, F ; Scheibel, T (American Chemical Society, 2020-05-20)
    In recent years, spider silk-based materials have attracted attention because of their biocompatibility, processability, and biodegradability. For their potential use in biomaterial applications, i.e., as drug delivery systems and implant coatings for tissue regeneration, it is vital to understand the interactions between the silk biomaterial surface and the biological environment. Like most polymeric carrier systems, spider silk material surfaces can adsorb proteins when in contact with blood, resulting in the formation of a biomolecular corona. Here, we assessed the effect of surface net charge of materials made of recombinant spider silk on the biomolecular corona composition. In-depth proteomic analysis of the biomolecular corona revealed that positively charged spider silk materials surfaces interacted predominantly with fibrinogen-based proteins. This fibrinogen enrichment correlated with blood clotting observed for both positively charged spider silk films and particles. In contrast, negative surface charges prevented blood clotting. Genetic engineering allows the fine-tuning of surface properties of the spider silk particles providing a whole set of recombinant spider silk proteins with different charges or peptide tags to be used for, for example, drug delivery or cell docking, and several of these were analyzed concerning the composition of their biomolecular corona. Taken together this study demonstrates how the surface net charge of recombinant spider silk surfaces affects the composition of the biomolecular corona, which in turn affects macroscopic effects such as fibrin formation and blood clotting.
  • Item
    Thumbnail Image
    Modular Assembly of Host-Guest Metal-Phenolic Networks Using Macrocyclic Building Blocks
    Pan, S ; Guo, R ; Bertleff-Zieschang, N ; Li, S ; Besford, QA ; Zhong, Q-Z ; Yun, G ; Zhang, Y ; Cavalieri, F ; Ju, Y ; Goudeli, E ; Richardson, JJ ; Caruso, F (Wiley, 2020-01-02)
    The manipulation of interfacial properties has broad implications for the development of high‐performance coatings. Metal–phenolic networks (MPNs) are an emerging class of responsive, adherent materials. Herein, host–guest chemistry is integrated with MPNs to modulate their surface chemistry and interfacial properties. Macrocyclic cyclodextrins (host) are conjugated to catechol or galloyl groups and subsequently used as components for the assembly of functional MPNs. The assembled cyclodextrin‐based MPNs are highly permeable (even to high molecular weight polymers: 250–500 kDa), yet they specifically and noncovalently interact with various functional guests (including small molecules, polymers, and carbon nanomaterials), allowing for modular and reversible control over interfacial properties. Specifically, by using either hydrophobic or hydrophilic guest molecules, the wettability of the MPNs can be readily tuned between superrepellency (>150°) and superwetting (ca. 0°).
  • Item
    Thumbnail Image
    The Biomolecular Corona in 2D and Reverse: Patterning Metal–Phenolic Networks on Proteins, Lipids, Nucleic Acids, Polysaccharides, and Fingerprints
    Yun, G ; Richardson, JJ ; Capelli, M ; Hu, Y ; Besford, QA ; Weiss, ACG ; Lee, H ; Choi, IS ; Gibson, BC ; Reineck, P ; Caruso, F (Wiley, 2020-01-03)
    The adsorption of biomolecules onto nanomaterials can alter the performance of the nanomaterials in vitro and in vivo. Recent studies have primarily focused on the protein “corona”, formed upon adsorption of proteins onto nanoparticles in biological fluids, which can change the biological fate of the nanoparticles. Conversely, interactions between nanomaterials and other classes of biomolecules namely, lipids, nucleic acids, and polysaccharides have received less attention despite their important roles in biology. A possible reason is the challenge associated with investigating biomolecule interactions with nanomaterials using current technologies. Herein, a protocol is developed for studying bio–nano interactions by depositing four classes of biomolecules (proteins, lipids, nucleic acids, and polysaccharides) and complex biological media (blood) onto planar substrates, followed by exposure to metal–phenolic network (MPN) complexes. The MPNs preferentially interact with the biomolecule over the inorganic substrate (glass), highlighting that patterned biomolecules can be used to engineer patterned MPNs. Subsequent formation of silver nanoparticles on the MPN films maintains the patterns and endows the films with unique reflectance and fluorescence properties, enabling visualization of latent fingerprints (i.e., invisible residual biomolecule patterns). This study demonstrates the potential complexity of the biomolecule corona as all classes of biomolecules can adsorb onto MPN-based nanomaterials.
  • Item
    Thumbnail Image
    Glycogen as a Building Block for Advanced Biological Materials
    Besford, QA ; Cavalieri, F ; Caruso, F (Wiley, 2020-05-07)
    Biological nanoparticles found in living systems possess distinct molecular architectures and diverse functions. Glycogen is a unique biological polysaccharide nanoparticle fabricated by nature through a bottom‐up approach. The biocatalytic synthesis of glycogen has evolved over time to form a nanometer‐sized dendrimer‐like structure (20–150 nm) with a highly branched surface and a dense core. This makes glycogen markedly different from other natural linear or branched polysaccharides and particularly attractive as a platform for biomedical applications. Glycogen is inherently biodegradable, nontoxic, and can be functionalized with diverse surface and internal motifs for enhanced biofunctional properties. Recently, there has been growing interest in glycogen as a natural alternative to synthetic polymers and nanoparticles in a range of applications. Herein, the recent literature on glycogen in the material‐based sciences, including its use as a constituent in biodegradable hydrogels and fibers, drug delivery vectors, tumor targeting and penetrating nanoparticles, immunomodulators, vaccine adjuvants, and contrast agents, is reviewed. The various methods of chemical functionalization and physical assembly of glycogen nanoparticles into multicomponent nanodevices, which advance glycogen toward a functional therapeutic nanoparticle from nature and back again, are discussed in detail.
  • Item
    Thumbnail Image
    Ricocheting Droplets Moving on Super-Repellent Surfaces
    Pan, S ; Guo, R ; Richardson, JJ ; Berry, JD ; Besford, QA ; Bjornmalm, M ; Yun, G ; Wu, R ; Lin, Z ; Zhong, Q-Z ; Zhou, J ; Sun, Q ; Li, J ; Lu, Y ; Dong, Z ; Banks, MK ; Xu, W ; Jiang, J ; Jiang, L ; Caruso, F (Wiley Open Access, 2019-09-12)
    Droplet bouncing on repellent solid surfaces (e.g., the lotus leaf effect) is a common phenomenon that has aroused interest in various fields. However, the scenario of a droplet bouncing off another droplet (either identical or distinct chemical composition) while moving on a solid material (i.e., ricocheting droplets, droplet billiards) is scarcely investigated, despite it having fundamental implications in applications including self‐cleaning, fluid transport, and heat and mass transfer. Here, the dynamics of bouncing collisions between liquid droplets are investigated using a friction‐free platform that ensures ultrahigh locomotion for a wide range of probing liquids. A general prediction on bouncing droplet–droplet contact time is elucidated and bouncing droplet–droplet collision is demonstrated to be an extreme case of droplet bouncing on surfaces. Moreover, the maximum deformation and contact time are highly dependent on the position where the collision occurs (i.e., head‐on or off‐center collisions), which can now be predicted using parameters (i.e., effective velocity, effective diameter) through the concept of an effective interaction region. The results have potential applications in fields ranging from microfluidics to repellent coatings.
  • Item
    Thumbnail Image
    Selective Metal-Phenolic Assembly from Complex Multicomponent Mixtures
    Lin, G ; Rahim, MA ; Leeming, MG ; Cortez-Jugo, C ; Besford, QA ; Ju, Y ; Zhong, Q-Z ; Johnston, ST ; Zhou, J ; Caruso, F (AMER CHEMICAL SOC, 2019-05-15)
    Selective self-assembly in multicomponent mixtures offers a method for isolating desired components from complex systems for the rapid production of functional materials. Developing approaches capable of selective assembly of "target" components into intended three-dimensional structures is challenging because of the intrinsically high complexity of multicomponent systems. Herein, we report the selective coordination-driven self-assembly of metal-phenolic networks (MPNs) from a series of complex multicomponent systems (including crude plant extracts) into thin films via metal chelation with phenolic ligands. The metal (FeIII) selectively assembles low abundant phenolic components (e.g., myricetrin and quercetrin) from plant extracts into thin films. This selective metal-phenolic assembly is independent of the substrate properties (e.g., size, surface charge, and shape). Moreover, the high selectivity is consistent across different target phenolic ligands in model mixtures, even though each individual component can form thin films from single-component systems. A computational simulation of film formation suggests that the driving force for the selective behavior stems from differences in the number of chelating sites in the phenolic structures. The MPN films are shown to demonstrate improved antioxidant properties compared with the corresponding phenolic compounds in their free form, therefore exhibiting potential as free-standing antioxidant films.
  • Item
    Thumbnail Image
    Link between Low-Fouling and Stealth: A Whole Blood Biomolecular Corona and Cellular Association Analysis on Nanoengineered Particles
    Weiss, ACG ; Kelly, HG ; Faria, M ; Besford, QA ; Wheatley, AK ; Ang, C-S ; Crampin, EJ ; Caruso, F ; Kent, SJ (American Chemical Society, 2019-05-28)
    Upon exposure to human blood, nanoengineered particles interact with a multitude of plasma components, resulting in the formation of a biomolecular corona. This corona modulates downstream biological responses, including recognition by and association with human immune cells. Considerable research effort has been directed toward the design of materials that can demonstrate a low affinity for various proteins (low-fouling materials) and materials that can exhibit low association with human immune cells (stealth materials). An implicit assumption common to bio–nano research is that nanoengineered particles that are low-fouling will also exhibit stealth. Herein, we investigated the link between the low-fouling properties of a particle and its propensity for stealth in whole human blood. High-fouling mesoporous silica (MS) particles and low-fouling zwitterionic poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) particles were synthesized, and their interaction with blood components was assessed before and after precoating with serum albumin, immunoglobulin G, or complement protein C1q. We performed an in-depth proteomics characterization of the biomolecular corona that both identifies specific proteins and measures their relative abundance. This was compared with observations from a whole blood association assay that identified with which cell type each particle system associates. PMPC-based particles displayed reduced association both with cells and with serum proteins compared with MS-based particles. Furthermore, the enrichment of specific proteins within the biomolecular corona was found to correlate with association with specific cell types. This study demonstrates how the low-fouling properties of a material are indicative of its stealth with respect to immune cell association.
  • Item
    Thumbnail Image
    In Situ Characterization of Protein Corona Formation on Silica Microparticles Using Confocal Laser Scanning Microscopy Combined with Microfluidics
    Weiss, ACG ; Krueger, K ; Besford, QA ; Schlenk, M ; Kempe, K ; Foerster, S ; Caruso, F (AMER CHEMICAL SOC, 2019-01-16)
    In biological fluids, proteins bind to particles, forming so-called protein coronas. Such adsorbed protein layers significantly influence the biological interactions of particles, both in vitro and in vivo. The adsorbed protein layer is generally described as a two-component system comprising "hard" and "soft" protein coronas. However, a comprehensive picture regarding the protein corona structure is lacking. Herein, we introduce an experimental approach that allows for in situ monitoring of protein adsorption onto silica microparticles. The technique, which mimics flow in vascularized tumors, combines confocal laser scanning microscopy with microfluidics and allows the study of the time-evolution of protein corona formation. Our results show that protein corona formation is kinetically divided into three different phases: phase 1, proteins irreversibly and directly bound (under physiologically relevant conditions) to the particle surface; phase 2, irreversibly bound proteins interacting with preadsorbed proteins, and phase 3, reversibly bound "soft" protein corona proteins. Additionally, we investigate particle-protein interactions on low-fouling zwitterionic-coated particles where the adsorption of irreversibly bound proteins does not occur, and on such particles, only a "soft" protein corona is formed. The reported approach offers the potential to define new state-of-the art procedures for kinetics and protein fouling experiments.
  • Item
    Thumbnail Image
    Cobalt Phosphate Nanostructures for Non-Enzymatic Glucose Sensing at Physiological pH
    Tomanin, PP ; Cherepanov, PV ; Besford, QA ; Christofferson, AJ ; Amodio, A ; McConville, CF ; Yarovsky, I ; Caruso, F ; Cavalieri, F (AMER CHEMICAL SOC, 2018-12-12)
    Nanostructured materials have potential as platforms for analytical assays and catalytic reactions. Herein, we report the synthesis of electrocatalytically active cobalt phosphate nanostructures (CPNs) using a simple, low-cost, and scalable preparation method. The electrocatalytic properties of CPNs toward the electrooxidation of glucose (Glu) were studied by cyclic voltammetry and chronoamperometry in relevant biological electrolytes, such as phosphate-buffered saline (PBS), at physiological pH (7.4). Using CPNs, Glu detection could be achieved over a wide range of biologically relevant concentrations, from 1 to 30 mM Glu in PBS, with a sensitivity of 7.90 nA/mM cm2 and a limit of detection of 0.3 mM, thus fulfilling the necessary requirements for human blood Glu detection. In addition, CPNs showed a high structural and functional stability over time at physiological pH. The CPN-coated electrodes could also be used for Glu detection in the presence of interfering agents (e.g., ascorbic acid and dopamine) and in human serum. Density functional theory calculations were performed to evaluate the interaction of Glu with different faceted cobalt phosphate surfaces; the results revealed that specific surface presentations of under-coordinated cobalt led to the strongest interaction with Glu, suggesting that enhanced detection of Glu by CPNs can be achieved by lowering the surface coordination of cobalt. Our results highlight the potential use of phosphate-based nanostructures as catalysts for electrochemical sensing of biochemical analytes.
  • Item
    No Preview Available
    Self-Assembly of Nano- to Macroscopic Metal–Phenolic Materials
    Yun, G ; Besford, Q ; Johnston, S ; Richardson, JJ ; Pan, S ; Biviano, M ; Caruso, F (American Chemical Society, 2018)
    The self-assembly of molecular building blocks into well-defined macroscopic materials is desirable for developing emergent functional materials. However, the self-assembly of molecules into macroscopic materials remains challenging, in part because of limitations in controlling the growth and robustness of the materials. Herein, we report the molecular self-assembly of nano- to macroscopic free-standing materials through the coordination of metals with natural phenolic molecules. Our method involves a simple and scalable solution-based template dipping process in precomplexed metal–phenolic solutions, enabling the fabrication of free-standing macroscopic materials of customized architectures (2D and 3D geometries), thickness (about 10 nm to 5 μm), and chemical composition (different metals and phenolic ligands). Our macroscopic free-standing materials can be physically folded and unfolded like origami, yet are selectively degradable. Furthermore, metal nanoparticles can be grown in the macroscopic free-standing films, indicating their potential for future applications in biotechnology and catalysis.